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ABSTRACT

Designing effective automatic speech recognition (ASR) systems for
Code-Switching (CS) often depends on the availability of the tran-
scribed CS resources. To address data scarcity, this paper introduces
Speech Collage, a method that synthesizes CS data from mono-
lingual corpora by splicing audio segments. We further improve
the smoothness quality of audio generation using an overlap-add
approach. We investigate the impact of generated data on speech
recognition in two scenarios: using in-domain CS text and a zero-
shot approach with synthesized CS text. Empirical results highlight
up to 34.4% and 16.2% relative reductions in Mixed-Error Rate
and Word-Error Rate for in-domain and zero-shot scenarios, re-
spectively. Lastly, we demonstrate that CS augmentation bolsters
the model’s code-switching inclination and reduces its monolingual
bias.

Index Terms— Code-switching, ASR, data augmentation, end-
to-end, zero-shot learning

1. INTRODUCTION

In multilingual societies, code-switching (CS) is integral to commu-
nication, enabling clearer expression and reflecting cultural nuances
[1, 2]. While CS is prevalent in daily conversations, it is underrep-
resented in transcribed datasets. This linguistic phenomenon, where
speakers interweave languages within a conversation or utterance,
poses challenges for voice technologies like automatic speech recog-
nition (ASR). Given the abundance of monolingual data and scarcity
of labeled CS speech, there’s a pressing need to harness monolingual
resources for CS applications. The prime challenge lies in develop-
ing robust ASR systems for CS in zero-shot settings where no CS
training data is available.

Several approaches have proposed to build CS ASR directly
from monolingual data by utilizing multilingual training [3–8]. Fur-
ther studies advocate for the joint modeling of CS and monolingual
ASR, effectively breaking down bilingual tasks into monolingual
components [9–11]. A prominent issue with monolingual training
is the model’s monolingual bias which impedes seamless language
switching [12]. To address this issue, several data augmentation
strategies have been proposed including textual data augmentation,
text-to-speech synthesis, and concatenation-based speech gener-
ation. In [13] authors proposed a methodology to generate the
code-switching text from monolingual text to improved ASR per-
formance with language model rescoring. In [8, 14], researchers
propose merging monolingual utterance to mimic code-switching.

†Both authors contributed equally to this research.

However, this strategy tends to primarily capture inter-sentential
switches, often sidelining the nuances of intra-sentential CS. On
another front, text-to-speech (TTS) based synthetic audio has gained
traction for CS data generation [15–21]. Despite its potential,
TTS based augmentation suffer from limited speaker variability
compared to real data. Consequently, there’s a growing interest
in using audio segment splicing as augmentation to covers more
speaker variations and acoustic environments [22, 23]. However
in the proposed splicing, speech segments and their corresponding
words are randomly selected, and the potential of splicing method
in code-switching remains unexplored.

In this paper, we introduce Speech Collage1, a data augmen-
tation technique that constructs synthetic code-switched audio
from monolingual data. Our method is inspired by traditional
concatenation-based speech synthesis techniques [24, 25]. We
demonstrate the efficacy of Speech Collage with two scenarios: a)
In-domain CS text: where target-domain CS text is leveraged, and b)
Zero-shot CS: where synthesized CS text is used. Our study covers
two language pairs: Mandarin-English and Arabic-English. Ex-
perimental results show substantial improvements Speech Collage
brings to code-switching ASR for both scenarios. Our contribu-
tions include: (i) a novel speaker-agnostic CS data augmentation
derived from monolingual resources, (ii) further improving ASR
performance with enhanced audio quality in generated data, and
(iii) propose a of zero-shot learning framework tailored for CS. As
an additional contribution, we conduct an ablation study to assess
the significance of each component on the final performance. We
also perform a modified Code Mixed Index (CMI) analysis to iden-
tify where the primary gains achieved through our augmentation
method.

2. SPEECH COLLAGE

We propose a framework designed to splice speech units extracted
from monolingual corpora. These units are based on code-switched
text, either real or synthesized, as depicted in Figure1. For the
merging process, we select word-units for English and Arabic, and
characters for Mandarin. While smaller units, such as phones, offer
greater adaptability, they tend to degrade audio quality [26]. The
constructed data form segment splicing, encompasses variations
from multiple speakers and diverse acoustic environments. We first
obtain the unit alignments with audio from the monolingual data by
training standard Hidden Markov Model-Gaussian Mixture Model

1Visit our repository for audio samples and implementation
https://github.com/JSALT2022CodeSwitchingASR/
generating-code-switched-audio
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Fig. 1. High level illustration of the proposed Speech Collage CS generation approach.

(HMM-GMM) 2 using Kaldi ASR toolkit [27]. Utilizing these
alignments, in conjunction with the CS text and monolingual audio,
our Speech Collage framework generates the CS audio dataset. In
cases where the training data possesses multiple segments for a
singular unit, a segment is selected at random. The generated audio
quality is further enhanced using the overlap-add technique, energy
normalization, and n-gram matching, as detailed below. The audio
enhancement and segment splicing were implemented using the
Lhotse toolkit [28].

2.1. Overlap-add

To enhance the quality of the generated CS audio, we employ the
overlap-add with a Hamming window to mitigate discontinuity ef-
fects resulting from spliced units. To ensure the segment capture of
each unit, we extend the unit-segments by 0.05 seconds at the start
and end of the segment. This extension provides an extra 0.05 sec-
ond which is utilized as overlap in overlap-add process.

2.2. Energy normalization

Additionally, we normalize the synthesized utterance by the average
of unit-segments energy to remove artifacts introduced by energy
variations between segments. For a speech sequence X of length T ,
X = {xt ∈ R|t = 1, · · · , T}, the average energy is calculated as
follows:

X ′ =

 xt√
1
T

∑
t x

2
t

|t = 1, · · · , T

 (1)

2.3. N-gram units

To further enhance the quality of the generated CS we explore splic-
ing consecutive units (n-grams), in alignment with selecting longer
units in concatenated speech synthesis [29] Given a CS sentence
our approach starts by matching the largest consecutive unit from
monolingual alignments. If a specific n-gram is unavailable, the al-
gorithm backs off to a smaller unit. It’s worth noting that in this
study, we only experimented with unigrams and bigrams. A detailed

2https://github.com/kaldi-asr/kaldi/tree/master/
egs/aishell/s5
https://github.com/kaldi-asr/kaldi/tree/master/

egs/mgb2_arabic/s5

Algorithm 1 Speech Collage
Require: Monolingual combined corpus D
Require: Code-switched text TCS

Require: Alignments A , size of n-grams n
1: function SETUPSUPERVISIONS(A, n)
2: for w1:n with timings (tns , tne ) ∈ A do
3: cut, w1:i← GETLONGESTAUDIOCUT(w1:n, (tns , tne ))
4: D[w1:i]← cut
5: return D
6: function NORMALIZEENERGY(audioCut) ▷ Eq 2
7: e← AVGENERGY(audioCut)
8: return audioCut /

√
e

9: function SAMPLEUNIT(D, w1:i)
10: return random cut from D[w1:i]

11: function GENERATECOLLAGE(TCS , A, n)
12: D ← SETUPSUPERVISIONS(A, n) ▷ n: size of n-gram
13: DCS ← ∅
14: for texti ∈ TCS do
15: W ← GETCONSECUNITS(texti)
16: for wi ∈W do
17: cut← SAMPLEUNIT(D[wi])
18: cutsi ← OVERLAPADD(cutsi,cut)
19: cutsi← NORMALIZEENERGY(cutsi)
20: cutsi.text← cutsi.text + wi ▷ Append wi

21: DCS .append(cutsi)
22: return DCS

description of n-gram Speech Collage implementation is described
in Algorithm 1. Using the alignments from monolingual data and
maximum n-gram size, SETUPSUPERVISIONS(·) creates a collec-
tion D of audio segments corresponding to each n-gram unit. Con-
secutive n-gram units are matched from alignments, starting with
n and progressing to unigrams. If an n-gram is absent, the algo-
rithm backs off to an (n − 1) unit. In GENERATECOLLAGE(·),
the function GETCONSECUNITS(·) returns all consecutive (1 : n)
units. Each n-gram unit is randomly drawn from its respective col-
lection using SAMPLEUNIT(·). These segments are appended to the
current spliced utterance with OVERLAPADD(·) described in §2.1,
and the resulting combined utterance undergoes energy normaliza-
tion NORMALIZEENERGY(·) from Eq1.

https://github.com/kaldi-asr/kaldi/tree/master/egs/aishell/s5
https://github.com/kaldi-asr/kaldi/tree/master/egs/aishell/s5
https://github.com/kaldi-asr/kaldi/tree/master/egs/mgb2_arabic/s5
https://github.com/kaldi-asr/kaldi/tree/master/egs/mgb2_arabic/s5


2.4. Zero-shot CS framework

In this case study we focus on generating Arabic-English code-
switching (CS) data, operating under the assumption that no Arabic-
English CS training data is available. To generate speech data using
the Speech Collage method, we require CS text. We generate the CS
text from monolingual resources using the lexicon-based (Random)
replacements approach described in [13]. The approach entails the
following steps:

1. Parallel Text Translation: We leverage a public Arabic-
English Machine Translation System3 to generate the parallel
English text from the Arabic transcription.

2. Word Level Alignments: After translation, we fine-tune
multilingual BERT (mBERT) [30] to obtain the word-level
alignments.

3. Random Replacement: Given the alignments, Arabic words
are randomly substituted with their corresponding English
words at a rate of 20%, as suggested by [13].

2.5. End-to-End Speech Recognition

In this work, we utilized the end-to-end (E2E) ASR conformer
architecture [31], with the ESPNET toolkit [32]. The E2E-ASR
implementation consists of a conformer encoder and a transformer
decoder. Both are multiblocked self-attention architectures with
the encoder further enhanced by an additional convolution module.
The ASR task is formulated as Bayesian decision finding the most
probable target word sequence Ŷ, from all possible outputs Y∗,
by selecting the sequence which maximizes the posterior likelihood
P (Y|X), given T-length sequence of D-dimensional speech fea-
tures, X = {xt ∈ RD|t = 1, · · · , T}. For text tokenization, we
used word-piece byte-pair-encoding [33]. The total loss function
Lasr is a multi-task learning objective that combines the decoder
cross-entropy (CE) loss Lce and the CTC loss [34] Lctc.

Lasr = αLctc + (1− α)Lce (2)

where α is used for interpolation. In our approach, the conformer
is initially pre-trained on monolingual data and subsequently fine-
tuned on monolingual and synthetic CS speech combined.

2.6. Code-Mixing Index

To quantify the amount of code-switching we use Code-Mixing In-
dex (CMI) metric [35]. The CMI for an utterance is defined as:

CMI =
1
2
∗ (N −maxi) +

1
2
P (x)

N
(3)

Where maxi represents the number of words in the dominant lan-
guage i, N is the total word count in the utterance, P is the number
of code alternation points, with the constraint 0 ≤ P < N . A low
CMI score indicates monolingualism in the text whereas the high
CMI score implies high degree of code-mixing in the text.

3. DATA AND EXPERIMENTAL SETUP

In-domain: The target domain we are considering is the Mandarin-
English code-switching, specifically SEAME [36]. In this scenario,
we utilize monolingual training data from Chinese AISHELL-1 [37],
100h of English data randomly sampled from Tedlium3 [38] and

3API access available from https://mt.qcri.org/api

SEAME text [36] to generate 62.2 hours of CS data. Evaluation
is performed on SEAME test sets (devman and devsge), measur-
ing mixed error-rate (MER) that considers word-level English and
character-level Mandarin. We also report WER on monolingual En-
glish and CER on monolingual Chinese subsets.
Zero-shot: For this scenario, we use monolingual training data from
MGB-2 [39] and Tedlium3. We generate 80 hours of CS data using
synthetic CS text described in §2.4. Evaluation is conducted on ES-
CWA [8], which is a real Arabic-English CS dataset.
Data pre-processing: All audios are augmented with speed pertur-
bations (0.9, 1.0 and 1.1) and transformed into 83-dimensional fea-
ture frames (80 log-mel filterbank coefficients plus 3 pitch features).
Additionally, we augment the features with specaugment, with
mask parameters (mT,mF, T, F ) = (5, 2, 27, 0.05) and bi-cubic
time-warping.
Models: the conformer encoder consists of 12 blocks, each with
2048 feed-forward dimensions, 256 attention dimensions, and 4 at-
tention heads. The transformer decoder has 6 blocks with configura-
tions similar to the encoder. We combine 2622 Mandarin characters
with 3000 English BPE units for In domain scenario. As for the
Zero-shot scenario we use a shared Arabic-English vocabulary of
size 5000 BPE. Our training configuration utilizes Adam optimizer
with a learning rate of 0.001, warmup-steps of 25K, a dropout-rate of
0.1 and 40 epochs. We use joint training with hybrid CTC/attention
by setting CTC weight α, Eq 2, to 0.3. During inference, we use
a beam size of 10 with no length penalty. For the language model
(LM), we train a long short term memory (LSTM) with 4 layers,
each of 2048 dimensions, over 20 epochs. When integrating LM
with E2E-ASR, we apply an LM weight of 0.2.

4. RESULTS AND ANALYSIS

4.1. In-domain CS text

We examine the impact of augmenting data with generated CS
speech from monolingual data, particularly by integrating in-domain
CS text. The results, presented in Table 2, are based on the SEAME
evaluation. The results from Mono, obtained by training on mono-
lingual Chinese and English data, act as our baseline. A shallow
fusion with a SEAME-LM, trained on SEAME text data, results in
a marginal relative reduction: up to 2% in MER. However, simple
CS augmentation using unigram units yields up to 15.3% relative
reductions in MER, compared to Mono. By further enhancing the
audio quality of the generated data, we achieve an overall relative
improvement of up to 34.4% in MER compared to the Mono. Fi-
nally comparing our best results to ASR trained on SEAME, the

Table 1. Comparison of the CER/WER/MER results on SEAME.
CS: generated CS using in-domain SEAME text. Mono: baseline
trained on monolingual data, (Unigram, Bigram): generated CS
using (unigram, bigram) units, SE: signal enhancement from §2,
SEAME-ASR: topline model trained on SEAME.

Model DevMan DevSge

CER-MAN WER-EN MER CER-MAN WER-EN MER

Mono 37.2 67.4 32.9 56.7 47.5 38.4
+ SEAME-LM 36.4 65.9 32.2 55.2 46.5 37.6
+ CS-Unigram 31.5 55.3 28.4 47.5 42.2 34.4
+ CS-Unigram-SE 29.7 53.7 27.2 44.0 40.9 33.0
+ CS-Bigram-SE 27.2 47.9 25.4 39.7 38.1 31.4

SEAME-ASR (topline) 15.1 28.8 16.5 21.7 28.7 23.5

https://mt.qcri.org/api


Table 2. Comparison of the CER/WER results on ESCWA. CS:
data generated using synthetic CS text. Mono: baseline trained on
monolingual data, (Unigram, Bigram): generated CS using (uni-
gram, bigram) units, SE: signal enhancement from §2

Model MGB-2 TED3 ESCWA

CER WER CER WER CER WER

Mono 6.1 12.9 4.4 8.5 31.1 48.7
+ CS-LM 6.3 12.5 4.6 8.7 38.0 57.0
+ CS-Unigram 6.9 14.6 5.2 10.1 24.0 42.7
+ CS-Unigram-SE 7.0 14.7 10.4 5.4 23.1 42.0
+ CS-Bigram-SE 7.0 14.7 10.2 5.2 22.5 40.8

absolute gap is up to 8.9% MER. Given that we utilize SEAME text
for data generation, this gap can be attributed to audio mismatches.
Thus, we anticipate that further enhancements in audio quality to
align with SEAME will bridge this gap.

4.2. Zero-shot CS

We investigate the effects of augmenting the dataset with CS speech,
generated from monolingual data and synthetic CS text. This syn-
thetic CS text is produced from the monolingual Arabic MGB-2 and
English Tedlium3 datasets, as described in §2.4. Our evaluations,
detailed in Table 2, utilize the ESCWA dataset. Operating under
our assumption that we do not have access to real CS data, we use
the merged evaluation sets from MGB-2 and Tedlium3 to select the
best epochs for the model. The observations align with those from
§4.1: the CS-Unigram yields relative reductions of 12.3% in WER
and 22.8% in CER. Interestingly, the results from shallow fusion
with Mono + CS-LM consistently underperform when compared
to Mono. Moreover, enhancing the quality of the generated audio
further improves results, leading to an overall relative improvement
of 16.2% in WER and 27.6% in CER compared to Mono. It’s note-
worthy that, on monolingual data, performance deteriorates with CS
augmentation. This suggests model bias towards code-switching and
a reduced inclination for monolingual data. We further analyze this
observation in §4.4.
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Fig. 2. WER/MER at different percentages of generated CS data
where 0%: represents Monolingual, 100%: represents Monolingual
with all generated CS.

Table 3. Comparison of the average CMI. Mono: baseline trained on
monolingual data, SE: Signal enhancement from §2, Ref: reference,
(Uni, Bi): generated CS using (unigram, bigram) units.

Dataset Ref Mono CS-Uni CS-Uni-SE Bi-SE

ESCWA 15.6 8.7 10.6 11.6 10.5
SEAME 10.4 3.3 5.4 6.2 7.3

4.3. Generated CS data size

We explore the impact of the amount of generated CS data size on
ASR system performance. Figure 2 illustrates the WER at different
percentages of generated CS data. In this experiment, we gener-
ated CS data with bigrams at 10%, 50%, and 100%. The 0% rep-
resents monolingual condition, while 100% corresponds to 80 hours
for Arabic-English and 62.2 hours for Chinese-English. It can be
observed that there is a substantial improvement when using 10%
of generated CS data. However, as the percentage of generated CS
data increases, the rate of improvement decreases. This suggests that
with more data, further gains can be expected, albeit at a diminishing
rate.

4.4. Analysis

To understand the effect of our proposed CS augmentation, we mea-
sure the average CMI. Notably, the conventional CMI doesn’t ac-
count for the accuracy of the sentence. To address this, we select
predictions that closely align with the reference using a WER with
heuristic threshold set at ≤ 20%. It can be observed from Table
3, that employing CS data augmentation consistently elevates the
CMI. This affirms our assumption that CS augmentation enhances
the model’s aptitude for code-switching.

5. CONCLUSION

We introduced a framework that generates synthetic code-switched
data from monolingual corpora. Our findings demonstrate that inte-
grating this CS data augmentation yields substantial improvements
that surpass results from training exclusively on monolingual sources
or simply combining with a code-switched language model. The en-
hancement of the generated audio’s quality further improves the per-
formance. Additionally, in a zero-shot learning scenario, our CS
augmentation is superior to solely monolingual training. Finally,
we show that improvements from using CS data augmentation stem
from the model’s increased propensity for code-switching and a de-
creased bias towards monolingual input.
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