

2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2024), Seoul, Korea, 14~19 April

M3Dsynth: A dataset of medical 3D images with AI-generated local manipulations

Authors: Giada Zingarini, Davide Cozzolino, Riccardo Corvi, Giovanni Poggi, Luisa Verdoliva University Federico II of Naples

Background

- Most diseases diagnoses rely on medical imaging techniques
- 3D medical images are stored in secure Picture and Archive Communication System (PACS) servers

Background

• An **attacker** could enter the system and modify medical CT scans to induce an incorrect diagnosis [1]

[1] Y. Mirsky et al. "CT-GAN: Malicious tampering of 3d medical imagery using deep learning," 28th USENIX Security Symposium, 2019

Objective

- Most efforts in the **forensics community** are focused on the detection of deepfakes in natural videos/images
- We aim to stimulate the community to pay attention to AI-based manipulations of medical images by proposing **a dataset and a benchmark** [2]

Data generation process

• M3Dsynth consists of 8,577 manipulated samples with injection or removal of a cancer nodule

Removal Task: the real malignant nodule is replaced with a fake benign nodule with a diameter less than 8 mm

Injection Task: a fake malignant nodule with a diameter over than 10 mm is generated

Data generation process

• The tampering process works on 32-mm cubes selected from the original CT-scan at the desired location

Data generation process

- The central cube of the selected sample is **masked** with zeros and then processed
- The generative network creates the nodule anew
- To preserve the anatomical information the process is **conditioned** with the surrounding pulmonary tissue

Generative architectures

- We build three versions of the same manipulated CT scan using different generative methods
- We consider Generative Adversarial Networks (GAN) and Diffusion Models (DM)

Generative architecture: Pix2Pix GAN

- This is the 3D version of the conditional generative network Pix2Pix GAN [3,4]
- The masked cube guides the process since the generated cube has to be coherent with the original sample

[3] Y. Mirsky et al. "CT-GAN: Malicious tampering of 3d medical imagery using deep learning," in 28th USENIX Security Symposium, 2019.[4] P. Isola et al. "Image-toimage translation with conditional adversarial networks" CVPR 2017.

Generative architecture: CycleGAN

- It is based on the 3D CycleGAN [5], adapted to operate on 3D cubes
- We consider only the translation from masked cubes to synthetic cancerous/noncancerous tissue

[5] D. Iommi, 3D-CycleGan-Pytorch-Medical-Imaging-Translation, <u>https://github.com/davidiommi/</u> 3D-CycleGan-Pytorch-MedImaging

Generative architecture: Diffusion Model

- The model is based on the Denoising Diffusion Probabilistic Model [6] adapted for medical images [7]
- To perform the inpainting task the denoiser is provided with an additional input set to the masked cube

[6] J. Ho et al. "Denoising diffusion probabilistic models" NeurIPS 2020

[7] Z. Dorjsembe et al. "Threedimensional medical image synthesis with denoising diffusion probabilistic models," in MIDL 2022

Qualitative analysis

- Evaluation of the generated images through a **computer-aided diagnostic tool** [8]
- The tool localizes the nodules and provides a score of their potential cancerous condition
- The network is applied at the position where the nodule was **injected or removed**

[8] F. Liao et al. "Evaluate the Malignancy of Pulmonary Nodules Using the 3-D Deep Leaky Noisy-OR Network" IEEE TNNLS 2019

Qualitative analysis

- The diagnostic tool provides inverted diagnosis
- The removed nodules have the same histogram as pristine benign nodules
- The **injected nodules** are classified as malignant nodules, showing a similar trend to the **pristine malignant ones**

Histrograms of the pristine and manipulated scans

Benchmark: preliminary experiment

- The **forensics detector** [9] trained on general purpose (G.P.) images fails on M3Dsynth images
- The method has no clue on the nature of the medical images

		Test Set									
	_	Gene	eral purpose im	ages	M3Dsynth						
	Training Set	ProGAN	StyleGAN2	LDM	Pix2Pix	CycleGAN	DM				
ges	ProGAN	99.9	98.1	57.1	50.0	47.1	48.8				
M3Dsynth G. P ima	StyleGAN2	99.9	100	57.9	50.4	49.6	52.0				
	LDM	50.8	50.0	100	44.6	44.5	46.2				
	Pix2Pix	50.5	49.0	48.9	99.5	96.6	95.8				
	CycleGAN	49.5	49.0	49.9	97.7	98.5	91.6				
	DM	50.9	50.6	50.7	96.1	92.8	97.3				

[9] R. Corvi, et al. "On the detection of synthetic images generated by diffusion models," in IEEE ICASSP 2023.

Benchmark: preliminary experiment

- The **forensics detector** [9] trained on general purpose (G.P.) images fails on M3Dsynth images
- The method has no clue on the nature of the medical images

				Test Set				
		Gene	eral purpose im	ages	M3Dsynth			
3Dsynth G. P images	Training Set	ProGAN	StyleGAN2	LDM	Pix2Pix	CycleGAN	DM	
	ProGAN	99.9	98.1	57.1	50.0	47.1	48.8	
	StyleGAN2	99.9	100	57.9	50.4	49.6	52.0	Very different
	LDM	50.8	50.0	100	44.6	44.5	46.2	results after
	Pix2Pix	50.5	49.0	48.9	99.5	96.6	95.8	fine-tuning
	CycleGAN	49.5	49.0	49.9	97.7	98.5	91.6	_
Σ̈́	DM	50.9	50.6	50.7	96.1	92.8	97.3	

Benchmark: SOTA detectors

There are main differences between medical and general purpose images:

- Compression techiques are not customary for CT-scans
- Medical imaging sensors have different properties than smartphones or general cameras

Classical approaches which look for compression artifacts or traces of internal camera processing are not suitable for this task

Benchmark: SOTA detectors

• We choose the following generic forensics methods fine-tuned on **our** dataset M3Dsynth

Method	RGB	Others	Reference
Xception	\checkmark	_	F. Chollet, "Xception: Deep learning with depthwise separable convolutions," CVPR 2017
U-Net	\checkmark	-	O. Ronneberger et al. "U-net: Convolutional networks for biomedical image segmentation" MICCAI 2015.
HP-FCN	-	HP filters	H. Li and J. Huang, "Localization of deep inpainting using high-pass fully convolutional network" ICCV 2019.
ManTraNet	\checkmark	HP filters	Y. Wu et al. "ManTra-Net: Manipulation Tracing Network for Detection and Localization of Image Forgeries With Anomalous Features" CVPR 2019.
MVSS-Net	\checkmark	Trainable HP filter	X. Chen et al. "Image Manipulation Detection by Multi-View Multi-Scale Supervision" ICCV 2021.
TruFor	\checkmark	Noiseprint++	F. Guillaro et al. "TruFor: Leveraging all-round clues for trustworthy image forgery detection and localization," CVPR 2023.

Experimental analysis: metrics

- Detection: Pd@1% and balanced accuracy by comparing the maximum detection score obtained over all slices of an image
- Localization: F1 measure and IoU metric by comparing the generated 3D localization map and the ground truth

Experimental analysis: results

- Localization: the performance is good on average especially for TruFor and ManTraNet
- **Detection:** several methods show good detection performance showing lower results only in few cases (HP-FCN and U-Net)

-	Test Set	Pix2Pix				CycleGAN		DM			
-	Training Set	Pix2Pix	CycleGAN	DM	Pix2Pix	CycleGAN	DM	Pix2Pix	CycleGAN	DM	
•	U-Net [7]	44.5 / 30.7	39.7 / 26.6	35.5/23.2	34.4 / 23.3	57.5 / 43.6	22.7 / 15.5	46.9 / 33.3	49.1/35.8	57.7 / 43.6	
\Box	HP-FCN [8]	85.0 / 75.3	59.1 / 43.4	45.6/31.3	63.6 / 49.8	84.5 / 7 <u>5.3</u>	36.4 / 24.6	77.0 / 64.9	73.6 / 61.9	84.9 / 75.4	
-	ManTraNet [9]	87.0 / 79.1	66.5 / 50.5	61.4 / 45.5	74.8 / 63.3	85.5 / 77.2	60.5 / 47.4	83.2 / 73.0	81.8 / 70.7	87.2 / 78.5	
сl	MVSS-Net [10]	81.4 / 70.4	63.2 / 49.8	56.8 / <mark>42.5</mark>	74.7 / 64.2	86.2 / <mark>78.0</mark>	55.1 / 44.1	79.5 / 68.5	72.8 / 62.2	84.9 / 75.4	
· · · ·	TruFor [11]	89.9 / 82.9	68.1 / 55.5	68.0 / 54.7	79.0 / 70.1	88.2 / 81.2	65.0 / 54.1	84.4 / 75.2	76.9 / 66.7	89.3 / 82.0	
<u>9</u> 1%	Xception [6]	83.7 / 99.8	86.9 / 95.2	71.9 / 80.3	81.3 / 86.1	87.4 / 99.2	64.1/37.8	83.5 / 97.7	86.8/94.1	71.9/96.9	
Pd@	U-Net [7] HP-FCN [8]	52.9 / 93.1 59.8 / 45.6	60.3 / 74.5 71.4 / 50.8	53.7 / 56.5 60.2 / 31.7	52.1 / 64.4 59.8 / 43.1	60.6 / 95.4 71.4 / 52.0	53.0 / 29.2 60.3 / 28.9	52.9 / 91.1 59.8 / 45.4	60.3 / 79.5 71.4 / 51.4	53.7 / 96.8 60.4 / 33.6	
Acc /	ManTraNet [9] MVSS-Net [10]	52.7 / 100. 73.0 / 95.8	56.6 / 99.9 92.5 / 97.2	52.8 / 91.2 75.4 / 86.2	52.7 / 93.4 72.1 / 70.8	56.6 / 99.7 92.7 / 99.3	52.8 / 87.3 73.7 / 67.4	52.7 / 99.9 73.0 / 91.2	56.6 / 100. 92.6 / 97.9	52.8 / 100. 76.0 / 99.3	
≺ .	TruFor [11]	95.0 / 100.	95.8/97.8	94.3/97.0	93.3/95.9	96.0/99.4	91.2/89.1	95.0/99.9	96.0/98.1	94.9/99.6	

Experimental analysis: results

- We test the **generalization** ability by testing each generator against all the others
- Only a **limited impairment** is observed on a non-aligned scenario

	Test Set	Pix2Pix				CycleGAN		DM		
-	Training Set	Pix2Pix	CycleGAN	DM	Pix2Pix	CycleGAN	DM	Pix2Pix	CycleGAN	DM
-	U-Net [7]	44.5 / 30.7	39.7 / 26.6	35.5 / 23.2	34.4 / 23.3	57.5 / 43.6	22.7 / 15.5	46.9 / 33.3	49.1 / 35.8	57.7 / 43.6
$\sum_{i=1}^{n}$	HP-FCN [8]	85.0 / 75.3	59.1 / <mark>43.4</mark>	45.6/31.3	63.6 / 49.8	84.5 / <mark>75.3</mark>	36.4 / 24.6	77.0 / 64.9	73.6 / <mark>61.9</mark>	84.9 / 75.4
-	ManTraNet [9]	87.0 / 79.1	66.5 / <mark>50.5</mark>	61.4 / 45.5	74.8 / 63.3	85.5 / 77.2	60.5 / 47.4	83.2 / <mark>73.0</mark>	81.8 / 70.7	87.2 / 78.5
,	MVSS-Net [10]	81.4 / 70.4	63.2 / <mark>49.8</mark>	56.8 / 42.5	74.7 / 64.2	86.2 / <mark>78.0</mark>	55.1 / 44.1	79.5 / <mark>68.5</mark>	72.8 / 62.2	84.9 / 75.4
	TruFor [11]	89.9 / 82.9	68.1 / <mark>55.5</mark>	68.0 / 54.7	79.0 / 70.1	88.2 / <mark>81.2</mark>	65.0 / 54.1	84.4 / 75.2	76.9 / <mark>66.7</mark>	89.3 / 82.0
d@1%	Xception [6] U-Net [7]	83.7 / 99.8 52.9 / 93.1	86.9 / 95.2 60.3 / 74.5	71.9 / 80.3 53.7 / 56.5	81.3 / 86.1 52.1 / 64.4	87.4 / 99.2 60.6 / 95.4	64.1 / 37.8 53.0 / 29.2	83.5 / 97.7 52.9 / 91.1	86.8 / 94.1 60.3 / 79.5	71.9 / 96.9 53.7 / 96.8
Acc / Pc	HP-FCN [8]	59.8 / <mark>45.6</mark>	71.4 / 50.8	60.2 / 31.7	59.8 / 43.1	71.4 / 52.0	60.3 / <u>28.9</u>	59.8 / <mark>45.4</mark>	71.4 / 51.4	60.4 / 33.6
	ManTraNet [9]	52.7 / 100.	56.6/99.9	52.8/91.2	52.7 / 93.4	56.6 / 99.7	52.8 / 87.3	52.7 / 99.9	56.6 / 100.	52.8 / 100.
	MVSS-Net [10]	73.0/95.8	92.5/97.2	75.4/86.2 9/3/970	72.1 / 70.8	92.7 / 99.3 96 0 / 99 /	73.7/67.4 91.2/89.1	73.0/91.2	92.6 / 97.9 96 0 / 98 1	76.0/99.3
		33.07 100.	33.07.57.0	34.37.0		JU.U / JJ.H	51.2705.1		30.07 30.1	3 7.3 7 33.0

Conclusions

- We introduced M3Dsynth a new large dataset of tampered 3D medical images with local AI-based manipulations
- The dataset has been used to train and test several state of-the-art methods which proved good both at detecting and localizing local manipulations
- Despite the good results we believe that with new and more sophisticated AI-generative techniques, it would be important to develop forensic approaches specifically tailored to medical data

Conclusions

- We introduced M3Dsynth a new large dataset of tampered 3D medical images with local AI-based manipulations
- The dataset has been used to train and test several state of-the-art methods which proved good both at detecting and localizing local manipulations
- Despite the good results we believe that with new and more sophisticated AI-generative techniques, it would be important to develop forensic approaches specifically tailored to medical data

