

CPAUG: REFINING COPY-PASTE AUGMENTATION FOR SPEECH ANTI-SPOOFING

Linjuan Zhang^{1,2}, Kong Aik Lee^{3,2*}, Lin Zhang⁴, Longbiao Wang⁵, Baoning Niu^{1,*}

¹Taiyuan University of Technology, Taiyuan, China ²Institute for Infocomm Research, A*STAR, Singapore ³The Hong Kong Polytechnic University, Hong Kong, China ⁴National Institute of Informatics, Tokyo, Japan ⁵*Tianjin University, Tianjin, China*

ICASSP 2024 KOREA

Abstract

Innovation

The proposed **CpAug** method represents a refined augmentation specifically for anti-spoofing.

- Unlike the conventional copy-paste that only concatenates utterances, CpAug also substitutes segments.
- (2) Explore four blending strategies that consider the same / different speakers and spoofing attack types when creating augmented instances.
- Compare the performance of the proposed CpAug with now widely-used (4)Rawboost, highlighting their synergistic benefits.

Results

- Compared with no data augmentation, the **CpAug** with substitution policy leads to relative improvements of 43% and 38% on the
- CpAug integrates basic signal processing to mitigate problems from (3)directly concatenating signals.
- ASVspoof' 19LA and 21LA, respectively.
- The **CpAug** and Rawboost synergize effectively, achieving an EER of **2.91%** on ASVspoof' 21LA.

CpAug: Refing Copy-paste Augmentation

Methodology

- **The Conventional Copy-paste Augmentation** ullet
 - $X_{\rm CP} = f_{\rm CP} (X_1, X_2) = X_1 \oplus X_2$
- **Substitution Policy** \bullet

$$\begin{aligned} X_{\text{sub}} &= f_{\text{sub}} \left(X_{\text{a}}^{\prime *}, \mathscr{S}, r \right) \\ &= \left\{ s_{\text{sub}}^{i} = \left\{ \begin{array}{cc} s^{j} & j \in R & \text{if} & i \in Q, \\ s_{\text{a}}^{i} & \text{otherwise.} \end{array} \right\}_{i=1}^{C} \right. \end{aligned}$$

 $\mathscr{S} = \{s^{\iota} : \iota = 1, \dots, M\}$

(cross-correlation, overlap-add)

Concatenation Policy

$$\begin{aligned} X_{\text{cat}} &= f_{\text{cat}} \left(X'_{\text{a}}, \mathscr{D}, r \right) = X'_{\text{a}} \oplus X'_{1} \oplus X'_{2} \oplus \dots \oplus X'_{r} \\ \mathscr{D} &\triangleq \{ X'_{i} : i = 1, \dots, K \} \end{aligned}$$

Different Blending Strategies

Tab. 1. Details of the augmented datasets with four blending strategies.

	Names	Blending	Strategies	Ave_	Ratio	
	1 (united)	Attack	Speaker	Dur (s)	(%)	
Concatenation	cat-satt-sspk	same	same	6.62	52.14	
	cat-datt-sspk	different	same	6.67	51.91	
	cat-satt-dspk	same	different	6.62	52.14	
	cat-datt-dspk	different	different	6.66	51.83	
Substitution	sub-satt-sspk	same	same	3.23	45.88	
	sub-datt-sspk	different	same	3.25	45.20	
	sub-satt-dspk	same	different	3.23	45.78	
	sub-datt-dspk	different	different	3.23	45.06	

			 f_{sub} r = 2	•				
s ¹ X	s ² _a	s ³ a			<i>s</i> ¹ _a	s^2 X_{sub}	s ³	

Experimental Results

21LA

EER t-DCF

6.38

4.41

5.22

4.85

5.76

3.93

4.23

4.36

5.13 0.3086

0.3328

0.3019

0.3309

0.3086

0.3380

0.2851

0.2909

0.2993

Tab. 2. Performance in EER (%) and t-DCF on 19LA test set with different policies.

https://github.com/zlin0/CpAug

€ ∕ GitHub

Tab. 3. EER (%) and t-DCF on 19LA and 21LA tests with different blending strategies using Rawformer.

zhanglinjuan@tyut.edu.cn

	-				2 			
DA	r	Back-end	EER	t-DCF	DA	02	19	9LA
No	0		0.93	0.0285	DA	T	EER	t-DCF
conve CP	1		1.22	0.0410	No	-	1.35	0.0425
cat-satt-dspk	1	AASIST	0.86	0.0253	cat-satt-sspk	1	1.16	0.0355
sub-satt-dspk*	1		0.90	0.0292	cat-datt-sspk	1	1.22	0.0386
sub-satt-dspk	[1,16]		0.88	0.0270	cat-satt-dspk	1	1.09	0.0341
No	0		1.35	0.0425	cat-datt-dspk	1	1.28	0.0431
conve CP	1		1.40	0.0440	sub-satt-sspk	[1,16]	0.88	0.0288
cat-satt-dspk	1	Rawformer	1.09	0.0341	sub-datt-sspk	[1,16]	1.02	0.0336
sub-satt-dspk*	1		1.02	0.0332	sub-satt-dspk	[1,16]	0.77	0.0253
sub-satt-dspk	[1,16]		0.77	0.0253	sub-datt-dspk	[1,16]	1.12	0.0371

conve CP: the conventional copy-paste augmentation • *r*: the number of concatenated utterances or substituted segments

- sub-satt-sspk (Rawboost): Rawboost augmentation before 'sub-satt-sspk'
- Rawboost (sub-satt-sspk): Rawboost augmentation after 'sub-satt-sspk'
- Rawboost, sub-satt-sspk: independent augmentation using Rawboost and substitution strategies, separately

Tab. 4. Performance of combining the CpAug and Rawboost on the 21LA test set.

DA	Back-end	EER	t-DCF
No		10.51	0.4884
Rawboost		7.60	0.2601
sub-satt-sspk	AASIST	7.31	0.2488
sub-satt-sspk(Rawboost)		8.59	0.2853
Rawboost(sub-satt-sspk)		5.56	0.1776
Rawboost,sub-satt-sspk		5.60	0.1850
No		6.38	0.3328

Rawboost		4.02	0.2918	
sub-satt-sspk	Rawformer	3.93	0.2851	
sub-satt-sspk(Rawboost)		3.98	0.2740	
Rawboost(sub-satt-sspk)		2.91	0.2617	
Rawboost,sub-satt-sspk		3.61	0.2825	_

Conclusions

✓ We proposed the **CpAug** tailored for anti-spoofing using *concatenation* and substitution policies and found it performs well on the ASVspoof' 19LA and 21LA tests.

We explored four different blending strategies and found that using the \checkmark same spoofing attack type achieves the best performance.

✓ The proposed CpAug and Rawboost work well together, with the Rawboost(sub-satt-sspk) giving the best results.

Acknowledgements

We would like to thank Prof. Junichi Yamagishi for his invaluable suggestions.

This work was supported by the National Natural Science Foundation of China (Grant No. 62072326), the Key Research and Development Plan of Shanxi Province (202203021212282), in part by the China Scholarship Council (No. 202206930011), and part by Japan Science and Technology Agency Grants JPMJFS2136.

The work was done during Linjuan Zhang's internship at A*STAR.