A 3D VIRTUAL TRY-ON METHOD WITH GLOBAL-LOCAL ALIGNMENT AND DIFFUSION MODEL Shougan Pan^{1,2} Zhengwentai Sun³ Chenxing Wang^{1,2*} Junkai Zhang⁴ ICASSP 1 School of Automation, Southeast University; 2024 KOREA 2 Key Laboratory of Measurement and Control of Complex Systems of Engineering, Ministry of Education, Southeast University, Nanjing 210096, China; 3 The Hong Kong Polytechnic University;

Southeast University

Contribution

3D virtual try-on has recently received more attention due to its great practical and commercial value. However, there remains the problems that the garment cannot accurately correspond to a human body by geometric transformation and abnormal textures may be produced in the synthesis result. To address these issues, we propose a 3D virtual try-on method with global-local alignment and diffusion model. The main contributions of this paper are summarized as follows:

1) A 3D virtual try-on network framework through monocular 2D images is proposed to achieve more accurate 3D try-on mesh models;

Results

4 Institute of Automation, Chinese Academy of Sciences

Quantitative evaluation on 2D try-on results.

Method	SSIM ↑	PSNR ↑	LPIPS↓	FID↓
CP-VTON	0.8503	-	_	20.05
ACGPN	0.8924	-	-	20.19
M3D_VTON	0 9373	2/1 9/1	0 0395	16/18

- 2) A new garment alignment network is proposed to achieve superior warping results with global and local garment appearance flow;
- 3) An image synthesis strategy is proposed using a diffusion model based image generation network to enhance the quality of textures produced in edge regions.

Overview of our framework

Overview of our framework. The SGN generates a semantic map; the GLA predicts pixel-wise flows for warping garment; the part of 2D synthesis and 3D synthesis generate the try-on result on image and mesh, respectively, where R denotes mesh reconstruction.

0.7373ムエ・ノエ 0.0373**CF-VTON** 0.7940 20.50 0.1890 15.37 Ours(w/o DM) 0.9501 25.43 0.0374 14.86 Ours(o/ DM) 0.9511 25.49 0.0370 14.81

Quantitative evaluation on 2D try-on results.

Method	Abs. ↓	Sq.↓	RMSE↓
NormalGAN	15.41	0.778	18.94
PIFu	8.376	1.813	27.57
M3D-VTON	7.880	0.385	11.27
Ours(w/o DM)	7.839	0.364	10.91
Ours(o/ DM)	7.831	0.358	10.85

A visual comparison of the results between our method and the SOTA methods. The 3D reconstruction meshes are in the blue dashed boxes, and the rest are 2D try-on results. The red dashed boxes represent the defects in the corresponding methods.

Qualitative evaluation of our globallocal alignment Ours

TPS

Reference In-shop Garment Person

Reference Person

ACGPN

Ours

Challenges in image-based virtual try-on

The deformation of clothes may lead to misalignment and cannot cover the textures of the clothing's back collar.

Acknowledgement

This work is supported by the National Natural Science Foundation of China (61828501), and the science and technology project fundings of State Grid Jiangsu Electric Power Co., Ltd. (J2023031).