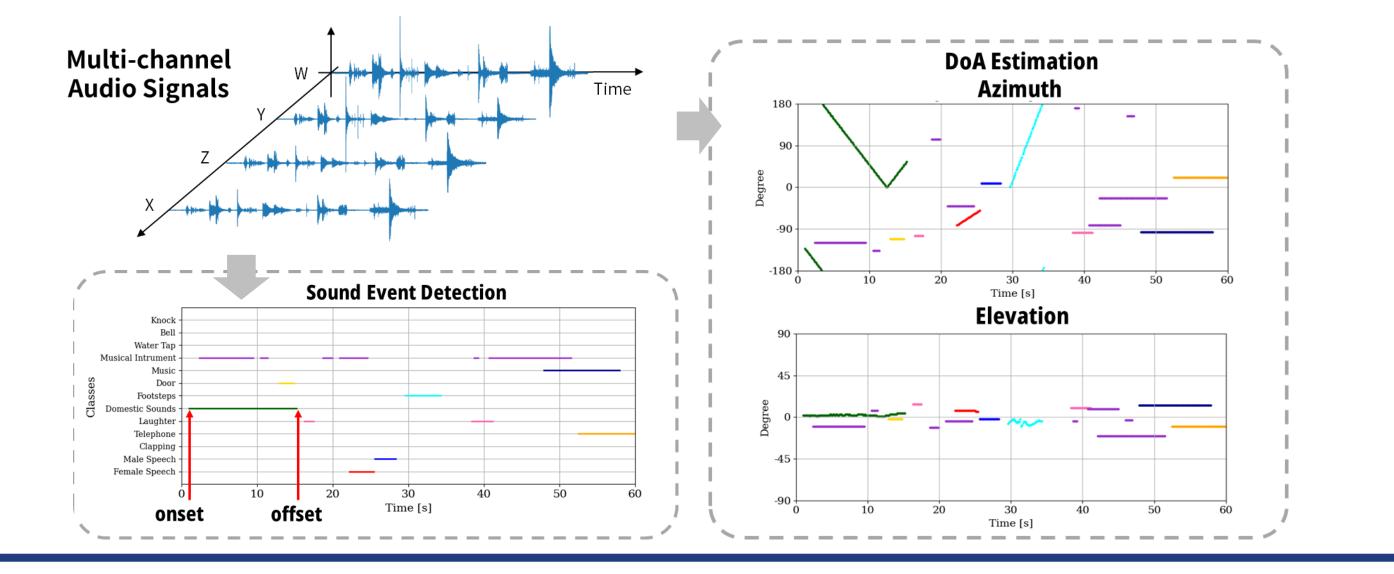
KAIST EE

2024.04.17 (Wed) SAM-P2.9 Poster Zone 6C

CST-FORMER

TRANSFORMER WITH CHANNEL-SPECTRO-TEMPORAL ATTENTION FOR SOUND EVENT LOCALIZATION AND DETECTION

Yusun Shul, Jung-Woo Choi


Paper Link

School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST)

Spectral

Sound Event Localization and Detection (SELD)

- Sound Event Detection (SED): classify sound events and detect the onset and offset in the temporal domain
- Localization: estimate the direction-of-arrival (DoA) of SE
- Using multi-channel audio signals
- Importance of the spatial, spectral, and temporal information

Embedding Generation Methods for CA

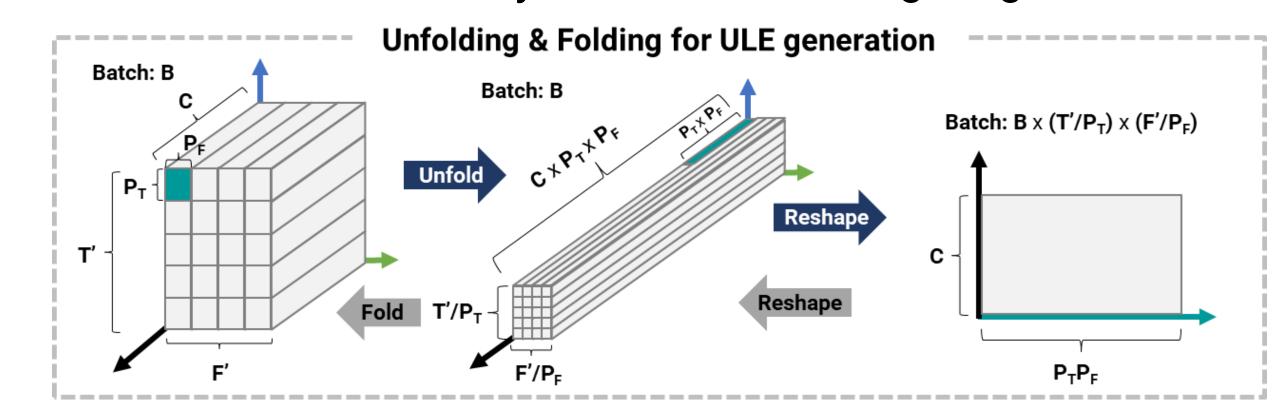
	Conv Block	LPU, IRFFN	C-MHSA	S-MHSA	T-MHSA
DCA	[(B M), 1, T, F]	[(B M), C, T', F']	[(B T' F'), M, C]	[(B T' M), F', C]	[(B F' M), T', C]
ULE	[B, M, T, F]	[B, C, T', F']	$[(B T'/P_T F'/P_F), C, P_TP_F]$	[(B T'), F', C]	[(B F'), T', C]

• Divided Channel Attention (DCA)

- The microphone input channel (M) is not encoded in the conv block and is utilized as the sequence of CA
- Encoded channel information (C) from the conv block is used as embedding

• Unfolded Local Embedding (ULE)

- The microphone input channel (M) is encoded in the conv block
- Encoded channel information (C) is used as the sequence of CA
 ULE generated with the unfold layer is utilized as the embedding for the CA
 Local T-F bins are affected by CA while maintaining the global T-F context


Temporal

Multi-dimensional Data

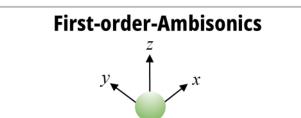
Limitations of Conventional Models

- Focused on learning the temporal context of multichannel signals
- Limited usage of multidimensional data
- Channel & spectral information used as the embedding of temporal sequence
- Easily overfitted with a small number of real recorded data

Model	Encoder	Decoder	Attention Domain	Pooling Location	Output Type	Parameter Size
2022 Baseline ^[10]	CNN	GRU	-	Front	Multi-ACCDOA	0.60M
2023 Baseline ¹	CNN	GRU, MHSA	Time	Front	Multi-ACCDOA	0.74M
ResNet- Conformer ^[16]	ResNet	Conformer	Time	Front Middle End	Multi-ACCDOA	58M
EINV2 ^[6]	CNN	Conformer	Time	Front	Multi-task	85M
DST Attention ^[21]	CNN	DST-MHSA	Frequency Time	Front	Multi-ACCDOA	0.30M
CST-former (Proposed)	CNN	CST- transformer	Channel Frequency Time	Front Middle	Multi-ACCDOA	0.39M

• Time-Frequency Pooling

- Different kernels in the conv block
- Matching the temporal resolution of the target label
- Minimizing the computational cost without sacrificing performance

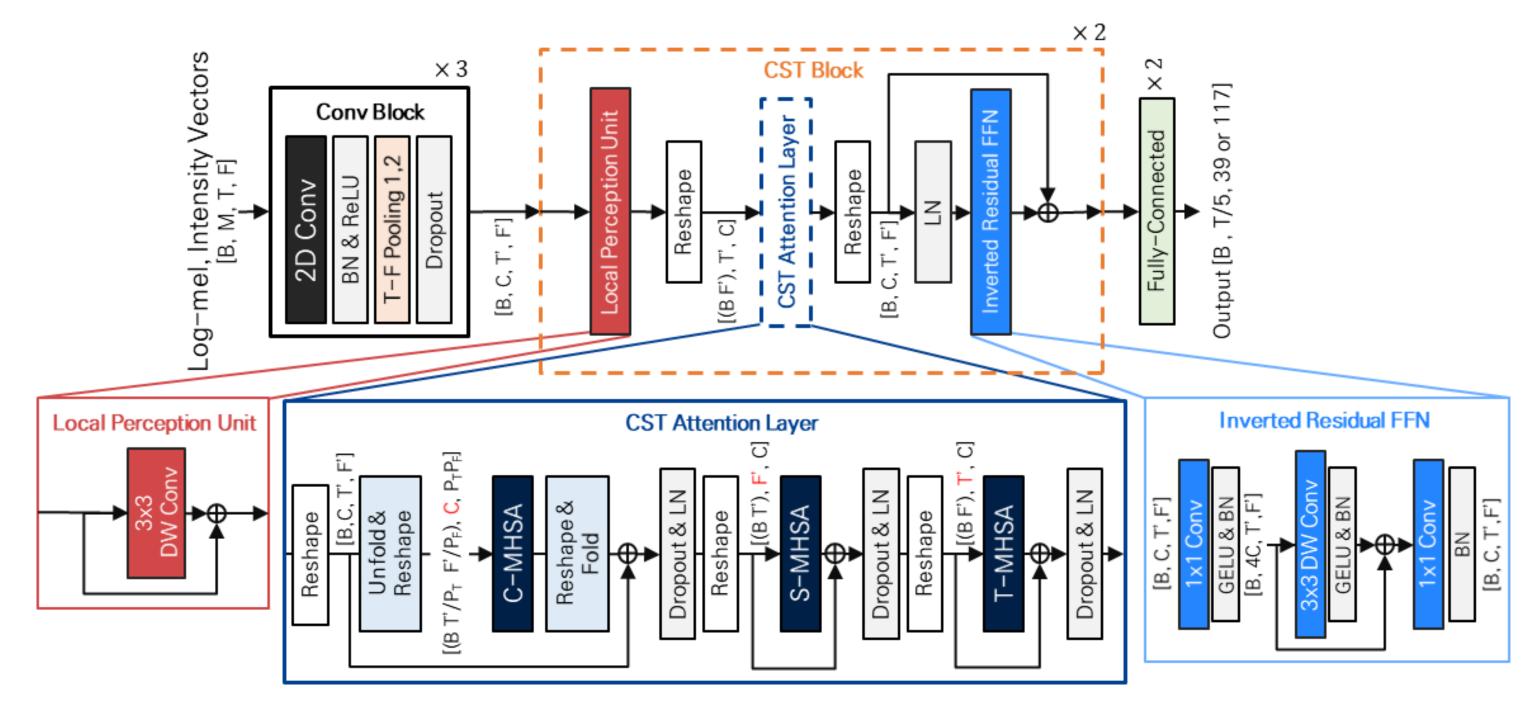

	Layer 1	Layer 2	Layer3
T-F pooling 1 (Front)	(5,2)	(2,2)	(1,1)
T-F pooling 2 (Middle)	(1,1)	(2,2)	(2,5)

Experimental Results

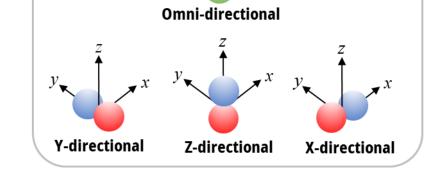
• Data

- DCASE 2022 / 2023 challenge task3
- : First-order-Ambisonics (FoA) format,
 - Maximum polyphony of five, 13 different classes
- 4 Log-mel spectrograms & 3 intensity vectors

Data	Туре	Room Variations	Duration
Train	Real	12	~5 h
Test	Real	4	~2.5 h
Train	Synthetic	10	20 h



Contributions


- Transformer with multidimensional attention layers for SELD
 - Attention modules learning context of each channel (spatial), spectral, and temporal domain
 - Two embedding generation methods for channel attention (CA)
 Divided Channel Attention, Unfolded Local Embedding

Proposed Architecture

Results on test data of DCASE 2022 task3 dataset

Model	СМТ	СА	Pooling Location	SELD Score↓	Error Rate↓	F-score↑	Localization Error↓	Localization Recall ↑
2022 Baseline ^[10]	-	-	Front	0.5345	0.72	24.0	26.6	49.0
2023 Baseline ¹	-	-	Front	0.5006 (6.3%↓)	0.70	29.1	23.8	53.9
DST Attention ^[21]	-	-	Front	0.4861 (9.0%↓)	0.68	31.4	22.6	54.7
	0	-	Front	0.4563 (14.6%↓)	0.66	36.6	22.5	59.1
	- UL	DCA	Front	0.4749 (11.1%↓)	0.68	33.7	22.6	56.9
		ULE	Front	0.4698 (12.1%↓)	0.67	36.4	21.3	54.5
CST-former (Proposed)		DCA	Front	0.4480 (16.2%↓)	<u>0.65</u>	36.8	23.2	<u>61.9</u>
			Front	<u>0.4286</u> (19.8%↓)	0.66	<u>40.0</u>	<u>21.3</u>	66.4
		ULE	Middle	0.4162 (22.1%↓)	0.59	42.6	20.5	61.3

• Verification with DCASE challenge task3 datasets

- Performance compared with various SELD models (**DCASE 2022**)

Model	Pooling Location	SELD Score↓	Error Rate↓	F-score↑	Localization Error↓	Localization Recall↑
2022 Baseline ^[10]	Front	0.5345	0.72	24.0	26.6	49.0
	Front	0.4928 (7.8%↓)	0.72	27.0	25.4	62.0
ResNet-Conformer ^[16]	Middle	0.4794(10.3%↓)	0.70	32.0	21.2	58.0
	End	0.4710 (11.9%↓)	0.71	31.0	22.3	64.0
EINV2 ^[6]	Front	0.5000 (6.4%↓)	0.75	32.0	24.0	56.0
CST-former	Front	<u>0.4286</u> (19.8%↓)	0.66	<u>40.0</u>	<u>21.3</u>	66.4
(Proposed)	Middle	0.4162 (22.1%↓)	0.59	42.6	20.5	61.3

• CST Block

- Structures from convolution meets transformer (CMT)^[22]
 - Local Perception Unit (LPU)
 - : Local temporal and spectral information extracted by 3x3 depthwise convolution
 - Inverted Residual Feed Forward Network (IRFFN)
 Substitutes the FFN of conformer

• CST Attention Layer

- Independent attention layers for different domains
- Spectral and temporal attention uses the encoded channel as embedding
- Two different ways of **embedding generation** for channel attention

- Performance on DCASE 2023 challenge task3 test dataset

Model	Pooling Location	SELD Score↓	Error Rate↓	F-score↑	Localization Error↓	Localization Recall ↑
2023 Baseline ¹	Front	0.4791	0.57	29.9	22.0	47.7
DST Attention ^[21]	Front	0.4345 (9.3%↓)	0.58	39.5	20.0	55.8
CST-former	Front	<u>0.4111</u> (14.2%↓)	0.58	<u>42.5</u>	<u>18.4</u>	<u>61.1</u>
(Proposed)	Middle	0.4019 (16.1%↓)	0.56	42.7	17.9	62.0

Conclusion

- [CST-former] Distinct multidimensional attention mechanisms for SELD task
- [ULE] Embedding generation for CA, utilizing the unfolded local temporal and spectral information as embedding
- Significant performance improvements even without data augmentation

