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Introduction
• Neural network pruning is effective for compressing ASR models.
• Pruning a multilingual ASR model entails several rounds of pruning and re-

training.
• Propose an adaptive masking approach to efficiently prune a multilingual

ASR model.
• Proposed method adapts a pruning mask with data in training.
• Compare performance with existing methods in two scenarios:

1. Sparse monolingual models for each language.
2. One sparse multilingual model for all languages.
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Recap: Existing Pruning Methods
• Suppose a dense neural net 𝑓(𝑥; 𝜃) with a binary pruning mask 𝑚 ∈ 0,1 |"|,

• Iterative magnitude pruning (IMP) [1]
• Initialization: 𝜃 = 𝜃#	𝑎𝑛𝑑	𝑚 = 𝟏,where 𝜃# are the pre-trained weights

Repeat
1. Train 𝑓(𝑥;𝑚⊙ 𝜃) for 𝑇 steps to obtain 𝑓(𝑥;𝑚⊙ 𝜃$).
2. Prune 𝑝% of total weights that has small magnitudes from 𝑚⊙ 𝜃$
3. Assign 𝜃$  to 𝜃 for the next iteration.

Until 𝑚 reaches the target sparsity

• Lottery ticket hypothesis (LTH) [2]
• Rewind the sub-network by assigning 𝜃# to 𝜃 in step 3 instead.

Drawback in Existing Pruning Methods
• The sub-network structure remains fixed throughout training.
• May commit early to a sub-optimal choice.
• May propagate errors to further fine-tuning stages.

Figure 1. Progressive pruning schedule [4]: prune a network at a low sparsity and 
incrementally steps up to the target sparsity. The pruning mask can be fixed for the training 

cycles at any sparsity level.

Proposed Adaptive Masking (monolingual)
• Masked-out: prune “softly”
• Prune weights in the network by setting them to zero.
• Keep pruned weights trainable.

• The adaptation step 𝒏
• Re-rank the magnitude of weights after 𝑛 steps of training.
• Note 𝑛 < 𝑇, where 𝑇 is the pruning interval.

Experiment Setup & Results
• Dense model: a streaming RNN-T model [5].
• Dataset: Multilingual Librispeech (MLS) dataset [6].
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Figure 2. Flowchart of the training and pruning process with adaptive masking enabled for 
monolingual data 

Proposed Adaptive Masking (multilingual)
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Figure 3. Flowchart of the training and pruning process with adaptive masking enabled 
for multilingual data 

• For a language 𝑧, define a “free-zone” sub-network mask 𝒎𝒓 = 𝟏	 −
	∪𝒍	𝒊𝒏	𝑳,	𝒍,𝒛𝒎𝒛.
• Prune “softly” from weights in 𝒎𝒛,𝒓⊙𝜃 , where 𝒎𝒛,𝒓 = 𝒎𝒛 ∪𝒎𝒓.
• The procedure is language-specific by maintaining monolingual batches.

• For pruning on all languages after 𝑇 steps, prune “softly” for each language.
• The procedure is language-agnostic, sharing weights newly trained.

Table 1: WER (%) results on the MLS test set, pruning a dense multilingual ASR model. The proposed approach allows the mask to change
in training and is compared to other pruning methods for monolingual training scenario.

Stage Model Mask can
change? Sparsity Monolingual or

Multilingual training? EN FR IT NL Avg.

Ref. 56M Dense / 0% Monolingual 12.15 16.00 27.62 23.23 19.75

(1) 187M Dense / 0% Multilingual 12.91 10.90 16.94 17.56 14.58

(2)
LAP No 70% Multilingual 13.82 11.98 27.71 19.32 18.21
IMP No 70% Monolingual 10.74 11.26 17.90 18.38 14.57
LTH No 70% Monolingual 10.80 10.38 18.44 17.48 14.28

(3) ASR Pathways (IMP-70%) No 70% Multilingual 11.15 10.68 17.53 16.90 14.06
ASR Pathways (LTH-70%) No 70% Multilingual 11.39 10.20 17.58 15.84 13.75

(2)
Proposed

IMP Yes 70% Monolingual 10.07 10.90 17.21 16.98 13.79
LTH Yes 70% Monolingual 10.54 9.91 17.06 16.63 13.53

3.3. The adaptive masking approach

3.3.1. Monolingual pruning

We propose an adaptive masking approach for monolingual pruning,
yielding a language-specific pruning mask adapted with the data. We
illustrate this approach as a flowchart shown in Figure 1. Within the
framework of the IMP procedure, we introduce a mask adaptation
step denoted as n (where n < T ). During the adaptation step, we
re-evaluate the sub-network configuration (adapt) by pruning from
all weights in ✓n with a portion p% that maintains the sparsity level
of the current pruning mask. Next, we prune “softly” by setting the
pruned weights to zero, denoted as (1�m) � ✓n, and make them
trainable (masked-out). Since the masked-out weights receive up-
dates from training, they can form new connections within the net-
work and reveal an optimal configuration of the sub-network as the
training evolves. For the pruning step, we simply raise the sparsity
level and prune from all weights in ✓n as opposed to pruning from
weights in m� ✓T in the IMP procedure.

3.3.2. Multilingual pruning

We propose an adaptive masking approach for multilingual pruning
based on the pathways training method described in [12], named
Dynamic ASR Pathways. We use a similar adaptation step to the
monolingual pruning and illustrate it in a flowchart shown in Figure
2. When a mini-batch in language z is processed, we train the sub-
network of this language z and a “residual” sub-network, excluding
other language-specific sub-networks. Given a language set L rep-
resenting all languages in the data, we denote this pruning mask as,

mz,r = mz [ (1� [l in L,l 6=zmz) (1)

During the adaption step, we re-evaluate the language-specific sub-
network by pruning from weights in mz,r �✓n with its current spar-
sity level held. Since the adaptation step is monolingual, the newly
adapted sub-network can become more language-specific compared
to before. During the pruning step, we simultaneously prune sub-
networks by pruning from weights in mz,r � ✓T , iterating over each
language z in the language set L. Because different languages would
share the “residual” sub-network depending on the data distribution,
this pruning step promotes parameter sharing among sub-networks,
compensating potential reductions in the adaptation step.

4. EXPERIMENTAL SETUP

4.1. Dataset

We conduct our experiments using the multilingual Librispeech
(MLS) [26] dataset, which consists of multilingual speech derived
from audiobooks. Our study focuses on four languages: English
(EN), French (FR), Italian (IT), and Dutch (NL), with respective
training audio length of 44.7k hrs, 1.1k hrs, 0.2k hrs, 1.6k hrs.

4.2. Implementation details

We employ a streaming RNN-T model for the dense multilingual
model, using 30 Emformer layers [27] with 512 input dimensions,
2048 feed-forward dimensions, and encoder layers with convolu-
tional blocks [28]. This model has about 180 million parameters. We
utilize word pieces to recognize spoken words in all four languages,
totaling 1548 items. For consistency, we use the same output layer
size for all training setups. The learning rate schedule is tri-stage
[29] with a peak learning rate of 1e-3. For monolingual models, we
conduct training for 100K, 80K, 50K, and 80K steps for EN, FR,
IT, and NL, respectively. The multilingual pathway model under-
goes training for 200K and 100K steps for IMP and LTH methods,
respectively. We also conduct a bilingual experiment for the mul-
tilingual pathway models, where the training step is 80K. We em-
ploy an uniform data sampling scheme for the multilingual training
when Dynamic ASR Pathways method is compared, otherwise an
non-uniform sampling scheme. The prune step T was set to be 8%
of the training step for each setup, with an adaption step n of 100
and a prune portion p of 20% across all experiments. Pruning was
applied exclusively to linear layers in the encoder Eformer and the
predictor LSTM layers, with a uniform sparsity across all prunable
layers [25]. We apply group lasso regularization following [30]. We
use 16 GPUs for monolingual training and 32 GPUs for multilingual
training, with a per-GPU batch size of 28.

5. RESULTS

We first show baseline results from using current pruning methods
(Section 5.1). We then compare the adaptive masking approach for
monolingual pruning to its relative baseline (Section 5.2). Finally,
we compare the adaptive masking approach for multilingual pruning
(Dynamic ASR Pathways) to the ASR Pathways baseline (Section
5.3).

Table 1. WER (%) results on the MLS test set, pruning a dense multilingual ASR model. The proposed 
approach allows the mask to change in training and is compared to other pruning methods for 

monolingual training scenario.

Table 2: WER (%) results on the MLS test set, utilizing language-
specific pruning masks. The proposed approach is compared to an
existing method for the bilingual training case.

Model Initialization Mask
change? Sparsity FR NL Avg.

ASR
Pathways LTH-70% No 70% 10.73 16.23 13.48

ASR
Pathways LAP-70% No 70% 11.98 19.32 15.65

Dynamic
ASR

Pathways

LTH-70% Yes 70% 11.31 15.55 13.43
LTH-50% Yes 70% 10.48 14.92 12.70
LTH-20% Yes 70% 10.99 16.17 13.58

Dynamic
ASR

Pathways

LAP-70% Yes 70% 10.98 16.54 13.76
LAP-50% Yes 70% 10.82 16.25 13.54
LAP-20% Yes 70% 10.88 16.43 13.65

5.1. Baselines

In Table 1, we present the results of existing methods for pruning a
multilingual ASR model. We breakdown these methods into three
stages: 1) training a dense multilingual ASR model, 2) pruning the
dense multilingual ASR model, and 3) training a sparse multilin-
gual model. For reference, we include results of dense monolin-
gual model. Both the IMP and LTH language-specific pruning meth-
ods achieve matching performance to the original dense multilingual
model and surpass the dense monolingual models. The ASR Path-
ways method outperforms other methods using the language-specific
masks obtained in Stage (2), promoting parameter sharing among
languages.

5.2. Adaptive masking in monolingual pruning

In the last two rows of Table 1, we present the results of using adap-
tive masking for monolingual pruning. Our proposed Stage (2) mod-
ified the IMP and the LTH language-specific pruning methods in
Stage (2) and achieved a consistent 5.3% relative WER reduction
averaged across languages. Comparing the adapted sub-networks to
the fixed ones, we noticed about an 80% similarity and a 20% differ-
ence, indicating the effective adaptation occurs within a small part
of the pruning masks. Our proposed Stage (2) also outperforms the
sparse multilingual model obtained in Stage (3), providing an effi-
cient alternative when storing multiple models is not a concern.

5.3. Adaptive masking in multilingual pruning

In Table 2, we show the results of a bilingual experiment when using
adaptive masking for multilingual pruning. We initialized the train-
ing with the LTH or the LAP masks at the target sparsity level (70%)
and achieved a consistent improvement when only adaptation is en-
abled. Notably, adapting the LAP-70% mask achieves a 12.1% rel-
ative WER reduction, indicating the adaptation step has effectively
turned the LAP mask to become more language-specific. We no-
ticed a similar but improved performance when using the LTH-70%
masks, suggesting these masks may be robust at a high sparsity level.

We observed the best overall performance using mask initializa-
tion at a middle sparsity level (50%) when both pruning and adap-
tation steps are enabled. For the LTH-50% mask initialization, our

1The union ratio indicates the ratio between surviving parameters in the
union of all masks and the total parameters of the network [12]

2Due to time limitation, this result is inferred at an early checkpoint, sub-
ject to a better future improvement

Table 3: WER (%) results on the MLS test set, utilizing language-
specific pruning masks. The proposed approach is compared to an
existing method, extending to four languages.

Model Initialization Sparsity EN FR IT NL Avg.

ASR
Pathways LTH-70% 70% 13.56 10.53 17.10 16.37 14.39

Dynamic
ASR

Pathways
LTH-50% 70% 14.84 10.35 16.10 15.15 14.11

Dynamic ASR Pathways method outperformed the respective ASR
Pathways baseline with a 5.8% relative WER reduction. From an
analysis, we find this model results in a even lower union ratio1

(0.34) compared to its baseline (0.36), indicating a better multilin-
gual performance is achieved using even less total effective model
parameters. We believe this effect can be attributed to the prun-
ing step introduced in our approach that increases parameter sharing
(Section 3.3.2). For different LAP mask initialization, we noticed
consistently a significant performance gain compared to its respec-
tive baseline. Further, it is almost matching performance to the ASR
Pathways baseline using the LTH-70% masks, showing a benefit of
efficiency with the language-specific pruning rounds eliminated.

In Table 3, we present the extended results of applying Dynamic
ASR Pathways to pruning for more languages, initializing from the
LTH-50% masks. Our proposed approach outperforms the ASR
Pathways baseline with a 2% relative WER reduction1 on average
across four languages. When considering the performance across
FR, IT, and NL, it achieves a notable 5.5% relative WER reduction.
When initializing at a 50% sparsity level, we saved additional rounds
of training and pruning for achieving a target sparsity level, showing
the efficacy of applying our approach towards efficient pruning of a
multilingual ASR model.

6. CONCLUSIONS

In conclusion, we proposed an adaptive masking approach for both
monolingual and multilingual pruning. In the former case, our pro-
posed method achieved a consistent 5.3% relative WER reduction
averaged across languages and outperformed the sparse multilingual
model obtained from going through an additional stage, offering
a convenient trade-off between storage and efficiency. In the lat-
ter case, we showed the efficacy of our approach in pruning and
adapting from different pruning mask initalizations. When initial-
ized from language-agnostic pruning masks, our Dynamic ASR
Pathways method showed a consistent and comparable performance
to the best performance of the ASR Pathways method that uses
language-specific pruning masks, indicating a benefit of efficiency
with our approach. When initialized from language-specific pruning
masks at a 50% sparsity level, our Dynamic ASR Pathways method
outperforms the ASR Pathways method, ranging from a 2% to 5.8%
relative WER reduction. For future work, we want to scale our
research of multilingual pruning for more languages and explore the
option to make pruning masks learnable.
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training scenario.

• Scenario 1: a consistent 5.3% relative WER reduction.
• One less training stage compared to ASR Pathways. 

• Scenario 2: a better 5.8% relative WER reduction.
• Efficient pruning starting from a language-agnostic pruning 

(LAP) mask.
• Strong extensions to more languages.

• ASR Pathways [3]
• Stage (1): Identify language-specific sub-networks by IMP or LTH.
• Stage (2): Fine-tune each pathway with a monolingual batch.
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