MONOCULAR VIDEO WITH CAMERA-BONE ANGLE REGULARIZATION ON THE IMAGE FEATURE

Asuka Ishii, Hiroo Ikeda (NEC)

Appearance information bounds solution space of 2D-to-3D lifting

Method | appearance information of subject

- Novelty ${ }^{(1)}$ CNN (AFE) added on PoseFormer[29], a 2D-to-3D-based network

- Novelty(2) Regularization on image features using camera-bone angles
- Camera-bone angles
between camera optical axis e_{z} and bones v computed from ground-truth

- Regularization loss $L_{A R}$
makes D, distance between image features of minibatch samples, proportional to S, unsimilarity of camera-bone angles of the samples

■ Why camera-bone angles?
Given ($\left\|v_{i}\right\|, K, \theta_{i}$), 2D-to-3D lifting solved analytically (K : camera intrinsic parameters)
However, training model to extract

- \|vill may cause overtraining
- K requires large extra training data [13]

We focus on camera-bone angles

Experiment

Approach	Method	Human3.6M		MPI-INF-3DHP	
		\# frames	MPJPE [mm] \downarrow	\# frames	MPJPE [mm] \downarrow
Image-based	Pavlalos+2018 [5]	1	56.2	1	-
	MargiPose [7]	1	55.4	1	85.2
2D-to-3D-based	*PoseFormer [10]	81	49.9	9	50.0
Ours	*PoseFormer + AFE	81	59.8		69.6
	*PoseFormer + AFE w/ $L_{\text {regress }}$		52.4		64.8
	*PoseFormer + AFE w/ $L_{\text {AR }}$	81	44.8	9	47.9

Conclusion \& future work

- Conclusion

- proposed to bound solution space of 2D-to-3D method, an ill-posed problem, by considering appearance information of subject as well.
- proposed regularization loss using camera-bone angles on image features.
- empirically showed the proposed method improves performance.

- Future work

- Replacement based 2D-to-3D network with SOTA
- Evaluation on unseen camera angles

