Self-supervised Speaker Verification Employing a **Novel Clustering Algorithm**

Abderrahim Fathan, Jahangir Alam

Computer Research Institute of Montreal (CRIM), Montreal (Quebec), Canada

Summary

- ≻ We propose a new general-purpose clustering algorithm called CAMSAT.
- CAMSAT combines the benefits of mutual information (MI) maximization of IMSAT clustering framework & the regularization benefit of AUGMIX (mix of augmentations at the predictions level)
- Using a thorough comparative analysis via clustering metrics, CAMSAT allows us to outperform all other clustering algorithms for speaker clustering.
- We achieve better speaker verification performance (SV) than all SOTA SV baselines.
- Benefits: better generalizability, robustness, and stability of clustering under data shift for large-scale datasets or/and a high number of clusters.
- We perform an ablation study to analyze the contribution of the different components of our proposed framework.

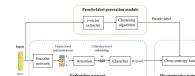
Introduction & Motivation

- Labeled datasets can be expensive and time-consuming to obtain.
- Label noise can significantly impact performance of self-supervised learning-based models. There are generally 2 groups of methods to learn from noisy data:
- Noise-robust algorithms: learn directly from noisy labels
- Label-cleansing approaches: remove or correct mislabeled data. How can we improve the performance of deep clustering models?
- How can we improve the estimation of the ground truth number of clusters?

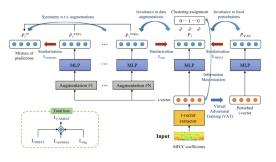
Proposed Approach

Clustering-based Self-supervised Systems

The general process for training our clustering generated pseudo-label-based self-supervised speaker embedding networks:



Proposed CAMSAT Approach



CAMSAT | Math Equations

We minimize the following objective

whe

 $|_{metry} = L_{aug} + R_{SAT}(\theta, T_{VAT}) + \lambda(H(Y|X) - \mu H(Y)) + L_{symmetry}$ $L_{CAMSAT} = L_{aug} + L_{IMSAT} + L_{sy}$

$$\begin{array}{c} \text{ fre: } L_{aug} = \frac{1}{N}\sum_{i=1}^{N} KL(p_i^{aug_i} || p_i) \\ \\ L_{symmetry} = \frac{1}{N}\sum_{i=1}^{N} \frac{1}{|J|}\sum_{j \in \{1,..,|J|\}} KL(p_i^{aug_j} || p_i^m) \end{array}$$

 $p_{i}^{m} = \frac{1}{|J|+1} [\sum_{j \in \{1,..,|J|\}} \alpha_{j} p_{i}^{aug_{j}} + p_{i}]$ $R_{SAT}(\theta;T) = \frac{1}{N} \sum_{n=1}^{N} R_{SAT}(\theta;x_n,T(x_n))$

 $R_{SAT}(\theta; x, T(x)) = -\sum_{c=1}^{C} \sum_{y_c=0}^{1} p_{\hat{\theta}}(y_c | x) log p_{\theta}(y_c | T(x))$

- L_{aug} forces the predicted representations of augmented samples to be close to those of the original data points
- $\mathcal{R}_{\mathit{SAT}}$ loss term allows the following:
- Representations of the augmented samples are pushed close to those of the original samples.
- Regularize the complexity of the network against local perturbations using Virtual Adversarial Training (VAT).
- L_{symmetry} allows the following:
- · Produce consistent feature representations that are labeled identically irrespective of transformations, generalize better, and generate compact clusters.
- Mixing augmentations generates further diverse transformations at the latent predictions level. - Induce robustness and reduce the memorization of used augmentations.
- Enforce representation smoothness and symmetry w.r.t data augmentations.
- · Bootstrapping mixed predictions can be considered a majority vote clustering method.
- · Conduct entropy minimization implicitly.

Experiments & Results

Experimental Setup

VoxCeleb Corpus

- Trained using the VoxCeleb2 development set: 5994 speakers (1,092,009 utterances in total)
- Evaluated on the VoxCeleb1-O test set: 40 speakers (4.874 utterances in total)
- Acoustic features: 40-dimensional MFCCs.

Data Augmentation

- Waveform-level data augmentations: additive noise and room impulse response (RIR) simulation.
- · SpecAugment is applied on the fly.
- · Both time and frequency maskings are performed.
- Additional augmentation for clustering (on i-vectors);
- Gaussian noise
 Input Masking (5-10% of input)
- Clustering Evaluation Metrics
 - · 7 Supervised metrics: Unsupervised clustering accuracy (ACC), Normalized Mutual Information (NMI), Adjusted MI (AMI), Completeness, Homogeneity, Purity, Fowlkes-Mallows index (FMI).
 - · 3 Unsupervised metrics: Silhouette score, Calinski-Harabasz score (CHS), Davies-Bouldin score (DBS).

Results

Results | Clustering & SV performances

Meeted		Speaker Verification										
Jun Jun	ACC	AMI	NMI	No. of cluster	Completeness	Homogeneity	FMI	Parity	Siboutto	CIIS	DBS	EER (%)
Supervised (True Labels)	1.0	1.0	1.0	5294	1.0	1.0	1.0	1.0	-0.005	31,708	4.682	1.437
GMM (Full erv.)	0.45	0.631	0.747	5080	0.767	0.728	0.312	4.568	-0.085	35.296	4.673	5.143
GMM (Fall cor., IlNorm)	0.504	0.678	0.789	5000	0.792	0.785	0.435	4.633	-0.065	41.568	5.114	5.429
GMM (Spherical cov.)	0.427	0.587	0.711	5080	0.729	0.685	0.22	4.539	-0.007	38.665	4.864	5.265
GMM (Diagonal cov.)	0.425	0.6	0.721	5080	0.745	0.695	0.23	0.539	-0.083	38.455	4.974	5.451
GMM (Tied cov.)	0.457	0.66	0.767	5000	0.765	0.747	0.317	0.574	-0.006	38.922	4.726	5.164
Baymian GMM (γ=3a-5, μ=1)	0.45	0.629	0.745	5080	0.766	0.727	0.312	0.566	-0.005	39.357	4.673	5.143
Bayesian GMM 1 (DNorm, y=30-5, µ=1)	0.504	0.678	0.789	5080	0.792	0.785	0.435	4.633	-0.065	41.57	5.115	5.139
Bayesian GMM 2 (y=100, p=0.05)	0.449	0.63	0.745	5080	0.765	0.727	0.311	1.566	-0.015	39.358	4.625	4.958
Division BC	0.097	0.294	0.477	5080	0.479	0.474	0.085	0.102	-0.06	15.044	9.065	13.531
KMeans	0.302	0.455	0.581	5080	0.645	0.546	0.134	0.311	-0.114	24.596	2.714	6.978
CURE	0.353	0.218	0.355	5000	0.465	0.34	0.001	0.215	-0.052	17.77	5.372	6.994
BIDCH	0.299	0.374	0.54	5000	0.735	4.43	0.053	4.353	-0.027	24.348	4.901	5.642
DEC	6.029	0.122	0.365	4901	0.386	0.345	0.007	4.036	-0.084	8.734	7.266	11.857
SOM	0.825	0.066	0.482	5041	0.404	0.4	0.01	4.637	-0.041	10.149	18.405	15.806
DeepCWRN	0.003	0.005	0.15	1085	0.179	0.129	0.001	0.003	-0.217	1.541	41.525	38.171
IMSAT	0.303	0.491	0.649	4987	0.968	0.63	0.297	0.425	-0.044	22.857	6.665	5.922
ABC	0.387	0.74	0.835	5080	0.841	0.81	0.331	0.684	-0.01	39.561	4.991	3.685
AHC (liNorm)	0.602	0.156	0.838	5000	0.849	0.827	0.325	4.693	-0.084	39.638	5.147	3.621
CAMSAT (S. 30k)	0.614	0.746	0.829	4293	0.643	0.835	0.557	4.636	-0.023	1.800	25.220	3.822
CAMSAT (ENorm, S. 296)	0.655	0.812	0.874	4596	0.855	1.96	0.641	0.675	-0.115	1.999	25.563	1.995

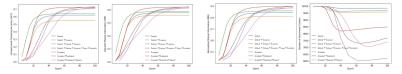
> Ablation study of all components

Note			Speaker Verificat							
	ACC AMI NMLN	is, of charter	Completeness B	biningments.	7741	Ports	Sthuette	C103	128.9	EEE (%)
DOAT (so June as Jopenning)	0.300 0.400 8.449	047	1.008	6-68	6.217	1.01	-0.801	22.442	0.008	3.913
no dependent	0.008 0.306 6.713	017	8.736	6-010	6.336	8.329	-0.396	1.881	24.007	3.270
to Laponetty, to Assr	0.65 0.360 6.733	5899	8.73	6 T30	6.34	1.00	-0.358	1.8	26.3	6.109
to Japanety, to Asar, C.19k	0.313 0.544 6.732	2006	8.795	0.754	6.275	8.515	-0.358	1.8	15.514	6.792
to Lupinery, to Asse, C.15h	0.256 0.67 8.715	14799	8.69	6.754	6.33	8.902	-0.13	1.8	15.114	7.015
BO Lang	0.09 0.848 8.703	000	8.773	0.777	8.414	8.333	-0.855	1.881	25.673	1.829
ne Loop, no mix of inputs sugmentation	0.02 0.641 6.763	5800	8.772	6.755	8.486	8.551	-0.393	3.305	25.906	5.027
no Easy, dispost	0.422 0.864 6.763	5899	8.791	0.795	8.403	1.142	-0.835	1.8	25.519	1.489
no Lungs no Datch/Sorm	0.01 0.874 6.987	5000	8,793	0.995	8.467	8.992	-0.918	1.883	25.894	5.818
ne Ling, only AU(p.(p?)) term in Equatory	0.319 0.421 6.621	662	8.854	0.014	6.297	8.417	-0.11	1.8	22,796	6.911
no Jung, mixture in the input space above	0.12.6 0.496 8.452	1063	8.671	0.688	6.0(1	8.451	-0.1	1.883	23.554	5.495
to fame, add apother dependence wenion at the input level	0.425 0.634 8.757	5300	8.755	6.759		8.525	-0.967	8.305	25.697	5.543
CAMEAT	0.52 0.794 6.606	5000	8.805	0.000	11.45	1.002	-0.025	1.8	25.294	4.825
CAMSAT 15:13k, C. 5980	0.556 0.724 8.421	5394	8.621	6.522	8.534	8.644	-0.849	1.880	23,374	4.538
CAMSAT (S-294)	0.589 9.741 6.695	5300	8.836	0.011	6.004	1.68	-0.309	1.4	25.425	4.3
CAMSET (USern, Noise)	0.583 0.754 8.835	1005	8.845	6.555	4.003	1.636	-0.126	1.880	34.908	3.65
CAMBAT (SSiom, 9, 154)	0.654 0.815 8.875	18554	0.891	6.86	1.443	1.673	-0115	1.4	25.634	3.95
CAMBAT (\$50ms, 8: 15k, C: 5004)	0.57 0.820 E.88	5208	0.855	0.817	1.002	1.00	-0.126	1.8	33.Des	3.041
CAMSAT (Solar, Marking)	0.556 0.756 8.834	5300	8.617	6.53	8.453	1.614	-0.820	1.882	21.304	4.63
CAMBAT (Noise, Masking, S. 15c)	0.585 0.743 6.621	5300	8.435	6.896	4.024	8.643	-0.324	1.883	31.621	4.178
CAMBAT (Noise, Masking, S. 33k)	0.514 0.746 8.829	1003	1.843	6.836		LOG	-0.303	1.883	25.336	3.813
CAMSAT (Dises, Making)	0.561 0.755 8.833	4007	8.849	6.822	0.044	1.632	-0.300	1.8	24,836	4.0KT
CAMBAT (2Nove, Noise, Masking)	0.376 0.76 8.84	600	8.83	6.83		LCD	-0.875	1.8		4.64
CAMSAT (SPlarm, Noise, Marking N-20k)	0.624 0.824 0.874	4935	0.89	6.820	LOI	6.67	-0.116	1.8	25.43	3.63
CAMNAT (Differen, Noise, Marking, S. 20k)	0.055 0.812 6.874	614	0.888	6.80		1.012	-0.130	0.300	24.563	3.061
CAMNAT (EPlans, Naise, Marking, S. 206, C. 206)	S.THO O.KI O.KAD	6364	0.892	0.446	0.706	0.745	-0.145	1.8	21.636	3.134
CAMBAT (DNews, Poice, Marking, St. 286, C. 116, ZaBatch size)	0.701 0.828 6.889	101	0.891	0.884	0.700	0.76	-0.132	1.8	21.13	3.334
MMUT (Dives, Nov, Making & 20, C 10, Label secondary	0.0717 0.82 0.849	6.02	0.892	0.886	0.708	0.743	-0.145	0.300	21.34	3.313
CAMERT (225arm, Naire, Marking, S. 20, C. 1994)	0.000 0.818 E.979	SON	0.888	0.908	1.639	1.01	-0.122	1.4	24.627	3.309
CAMONT (201ors), Notes, Marking, St. 28b)	0.000 0.001 0.007	009	1.879	0.877	1.4-80	1.03	-81	0.300	23.823	3.33

Distance metrics & Comparison to SOTA self-supervised SV approaches

Distance Metric	Clustering Metrics											Speaker Verification	SSL Objective	
	ACC	AMI	NMI No.	of cluster	Completeness E	lomogeneity	PMI	Purity	Silhouette	CHS	DBS	EER (%)	MoBY [62]	
KL divergence	0.528	0.702	0.805	5000	0.809	0.801	0.485	0.608	-0.026	1.001	25.465	4.008	InfoNCE [55]	
38 divergence	0.376	0.541	0.706	4994	0.702	0.71	0.317	0.441	-0.014	1.001	25.1	6.257	MoCo [6] ProtoNCE [42]	
Cosine distance	0.308	0.411	0.612	4897	0.616	0.609	0.259	0.335	-0.095	1.002	25.198	6.4	PCL [62]	
L2 loss	0.251	0.385	0.564	4895	0.59	0.541	0.134	0.275	-0.132	0.995	23.428	8.754	CA-DINO [26] i-mix [18]	
AAMSoftmax [13]	0.314	0.524	0.676	4729	0.691	0.661	0.251	0.361	-0.119	1.001	24.811	9.046	1-mix [18]	
Squared Earth Mover's distance [30]	0.051	0.127	0.407	4996	0.416	0.399	0.014	0.063	-0.05	0.998	25.638	18.627	Iterative clustering [54]	

CAMSAT | Clustering metrics over time



Advantages of our approach

- Our Mutual Information-based approach is rigorously grounded in information theory
- · Effortlessly avoid degenerate solutions
- Ensembling classifier predictions improves prediction calibration.
- Our clustering objective is easily scalable: No dependence on large batches of negative samples or large similarity matrices
- Is more suitable for large-scale datasets thanks to its robustness and stability against corruptions and data shift
- Adding Gaussian noise to inputs helps the exploration of different clustering configurations.
- CAMSAT is not sensitive to the predefined number of clusters
- CAMSAT recovers the number of clusters almost perfectly.

Key Findings

- We demonstrate the importance of our mixtures and the relevance of the notion of symmetry within augmentations
- Setting a higher predefined number of clustering in CAMSAT leads to improved performance.
- Beyond some clustering performance, the marginal improvement in final downstream SV performance becomes minimal and requires much more accurate PLs.