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Children are exposed to harmful content online



Children are harmed online1

1www.nytimes.com/interactive/2019/12/07/us/video-games-child-sex-abuse.html
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Children are harmed online2

2www.theguardian.com/society/2022/sep/29/
almost-half-of-children-in-england-have-seen-harmful-content-online-survey
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The legislation in UK3

3www.gov.uk/government/news/
landmark-laws-to-protect-children-and-stop-abuse-online-published

5/24

www.gov.uk/government/news/landmark-laws-to-protect-children-and-stop-abuse-online-published
www.gov.uk/government/news/landmark-laws-to-protect-children-and-stop-abuse-online-published


The legislation in EU4

4www.reuters.com/legal/litigation/
can-an-eu-law-save-children-harmful-content-online-2022-07-12/
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The legislation in US5

5www.nytimes.com/2022/08/30/business/california-children-online-safety.html
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PAD and age verification

Age verification

Rapidly expanding field
Often used when recognition is not desirable
Under-studied

Presentation attacks in age verification

Easier to perform than for biometric systems
No datasets available
No research related to PAD for age verification
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UTKPAD — dataset of face presentation attacks

Built specifically for age verification

Original UTKFace dataset (20K images) of faces from 1 to 110 years old
Replay attacks to iPhone 12, Galaxy S9, and Huawei Mate 30

Evaluation of the dataset

Vulnerability of state of the art age verification systems
Assess the existing attack detection systems developed for biometrics
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Creating the dataset



Process original images from UTKFace
Upsample images (face region) with CodeFormer6

Arrange all images into videos (display each image for 2 seconds)

6https://github.com/sczhou/CodeFormer 11/24
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Replay the images
Display videos on iPad Pro (2018)
Recording room with controlled and consistent lighting
Record videos with iPhone 12, Galaxy S9, and Huawei Mate 30
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Extract final images
Split recorded videos using the original order
Save middle frame from each segment as an image
UTKPAD: three sets of the same faces as in UTKFace
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Vulnerability of age verification



Image-based age verification methods7

Classification
Classify into predefined classes

Regression

Regress to a true age or class

Regression via classification (RVC)

Many classifiers with average regressing to a true age

Distribution
Classification with Gaussian ‘fuzzy’ labels

Adaptive distribution

Gaussian sigma depends on aging characteristics
7P. Korshunov and S. Marcel, “Face Anthropometry Aware Audio-Visual Age Verification”, ACM

Multimedia 2022
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Age detection on bona fide and replay attacks

Classification scenario (predicting one age category out of seven)

Train DB Method Bona fide iPhone 12 Galaxy S9 Huawei Mate 30

UTK adaptive 0.599 0.566 0.567 0.586
Several rvc 0.596 0.571 0.573 0.583
Several adaptive 0.591 0.587 0.584 0.595
UTK class., ResNet50 0.591 0.540 0.561 0.561
Several distribution 0.589 0.574 0.585 0.597
UTK rvc 0.581 0.534 0.554 0.573
UTK classification 0.574 0.529 0.543 0.560
Several classification 0.567 0.516 0.510 0.536
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Confusion matrices on bona fide and replay attacks
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0.70 0.09 0.02 0.06 0.11 0.01 0.01

0.25 0.24 0.15 0.16 0.17 0.01 0.01

0.01 0.09 0.09 0.39 0.38 0.03 0.00

0.00 0.01 0.02 0.27 0.66 0.04 0.00

0.00 0.00 0.01 0.12 0.69 0.17 0.02

0.00 0.00 0.00 0.01 0.34 0.47 0.18

0.00 0.00 0.00 0.00 0.03 0.16 0.81

(a) adaptive on original UTKFace
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0.72 0.10 0.04 0.04 0.10 0.00 0.01

0.29 0.20 0.23 0.19 0.08 0.00 0.01

0.02 0.07 0.14 0.49 0.26 0.01 0.00

0.01 0.01 0.04 0.45 0.48 0.01 0.00

0.00 0.00 0.01 0.21 0.62 0.15 0.01

0.00 0.00 0.00 0.04 0.35 0.47 0.13

0.00 0.00 0.00 0.00 0.03 0.17 0.80

(b) adaptive on attacks with Huawei
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Assess existing PAD systems



Presentation attack detection for face biometrics10

DeepPixBiS8

Fully connected network trained on image patches

CDCN++9

Central difference convolution network with multiscale attention fusion module

Trained on protocol 1 of the OULU-NPU dataset

Well-known dataset of photo and replay attacks
8A. George and S. Marcel, “Deep pixel-wise binary supervision for face presentation attack

detection”, ICB 2019
9Z. Yu et al., “Searching central difference convolutional networks for face anti-spoofing”, CVPR

2020
10Z. Boulkenafet et al., “OULU-NPU: A mobile face presentation attack database with real-world

variations”, IEEE FG 2017
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Performance on PAD for biometrics

Accuracy of attack detection following OULU-NPU Protocol 1

ACER ↓
(EER)

ACER ↓
(BPCER5)

ACER ↓
(BPCER20)

DeepPixBiS 2.1 20.0 9.6
CDCN++ 7.5 8.3 6.2
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Performance on UTKPAD

The threshold is set on OULU-NPU dev set

Model Replay attacks
ACER ↓
(EER)

ACER ↓
(BPCER5)

ACER ↓
(BPCER20)

DeepPixBiS
iPhone 12 38.9 40.1 37.3
Galaxy S9 48.7 52.4 50.2
Huawei Mate 30 57.7 59.9 59.4

CDCN++
iPhone 12 45.4 34.8 42.9
Galaxy S9 52.9 51.9 53.3
Huawei Mate 30 61.2 61.3 63.3
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Impact of replay attacks on age verification

Face age verification is vulnerable to replay attacks
Existing presentation attack detection is not generalizing
We need more dataset with children and corresponding attacks
The critical issue of children safety drives this type of work
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