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Main References:
p Exploring wav2vec2.0 fine-tuning for 

improved speech emotion recognition, 
Chen et al., ICASSP 2023.

Phase 1:(Generate pseudo label for each frame) Phase 2:(Align pseudo label and representation) Phase 3:(Realize SER)
p Using task adaptive pretrain HuBERT with IEMOCAP.
p Extracting the embedding of i-th transformer layer to 

generate pseudo emotion labels by K-means.

p Continuing pretraining HuBERT with frame-level pseudo-
emotion labels to align frame-level pseudo label and
representation of each frame.

p Utilizing attention to map the frame-level emotion 
alignment representation and utterance-level label 
for SER.
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pBased on the previous research work, a frame-level pseudo-
emotional label generation is proposed;

Not all frames in an audio have emotional states 
consistent with utterance-level emotional label.

pProposing an effective frame-level emotional state alignment method based 
on MLM for SER and achieving outstanding performance.

Dataset:
p IEMOCAP,  the number of samples is 5531;
p Leave-one-session-out cross validation;
p Metrics are the unweighted and weighted accuracy.

Clustering:
p K-means；
p The number of clusters attempted is 

50, 100, 150.

Pretraining:
p Masked language model (MLM) for pretraining;
p Mask 20% representation along with time dimension;
p Each fold of CV requires pretraining a model.

Pooling:
p Soft attention pooling；
p Average pooling.

pProposing a method for frame-level pseudo-emotion label and
representation alignment based on masked language model;

pMapping frame-level emotional alignment representations and
utterance-level emotional labels by attention mechanisms for
SER, and achieving remarkable performance.

The ablation experiments of the numbers of cluster (Table 1):

The ablation experiments of the method of pooling (Table 1):

Performance comparison with previous methods (Table 2):

pThe performance is strongly correlated with the representation of the i-th
transformer layer used for clustering and the number of clusters.

p The best number of clusters for SER on IEMOCAP is 50.
p The output of the ninth transformer layer in HuBERT-base for clustering is optimal.
p The number of clusters may be related to the size of the dataset.

p Attention outperform average pooling in aligning frame-level representations and utterance-level labels;
p However, as the number of layers and clusters increases, the average pooling performance approaches

and gradually surpasses the attention pooling.

p The proposed method achieves optimal performance compared to other recent research results.
p Meanwhile, the performance of method we proposed approximates that of some multimodal methods.


