

Frame-level Emotional State Alignment Method for Speech **Emotion Recognition**

Qifei Li, Yingming Gao, Cong Wang, Yayue Deng, Jinlong Xue, Yichen Han, Ya Li **Beijing University of Posts and Telecommunications, Beijing, China**

Contributions

Background

Not all frames in an audio have **emotional states** Motivation: **consistent** with **utterance-level** emotional **label**.

D Based on the previous research work, a frame-level **pseudo**emotional label generation is proposed;

- **D** Proposing a method for **frame-level pseudo-emotion label and** representation alignment based on masked language model;
- **D** Mapping frame-level emotional alignment representations and utterance-level emotional labels by attention mechanisms for SER, and achieving remarkable performance.

Methods

for frame-level alignment

CPT-HuBERT for SER

Phase 1:(Generate pseudo label for each frame) **Using task adaptive pretrain HuBERT with IEMOCAP. D** Extracting the embedding of i-th transformer layer to generate pseudo emotion labels by K-means.

Phase 2:(Align pseudo label and representation) Continuing pretraining HuBERT with frame-level pseudoemotion labels to align frame-level pseudo label and representation of each frame.

Phase 3:(Realize SER)

Utilizing attention to map the frame-level emotion alignment representation and utterance-level label for SER.

Experiments and Results

Dataset:

D IEMOCAP, the number of samples is 5531;

- **D** Leave-one-session-out cross validation;
- Metrics are the **unweighted and weighted** accuracy.

Pretraining:

D Masked language model (MLM) for pretraining; **D** Mask 20% representation along with time dimension; **D** Each fold of CV requires pretraining a model.

Clustering:

I K-means;

D The number of clusters attempted is 50, 100, 150.

Pooling:

□ Soft attention pooling; **Average pooling.**

The ablation experiments of the numbers of cluster (Table 1):

- **The best number of clusters for SER on IEMOCAP is 50**.
- **D** The output of the **ninth** transformer layer in HuBERT-base for clustering is optimal.
- **D** The **number** of clusters may **be related to** the **size** of the dataset.

Table 1. The UA/WA (%) of ablation experiments of different poolings and different clusters of different transformer layers. BL means Baseline. The i-th layer represents extracting the embeddings from the i-th transformer layer to cluster.

Layers	Clusters	Average Pooling	Attention Pooling	
BL [15]	-	74.3/-	-	
TAPT		74.1/72.8	-	
	50	75.0/73.6	75.2/73.6	
6- <i>th</i>	100	74.8/73.3	75.1/73.5	
	150	74.5/72.7	74.3/73.2	
	50	75.1 /73.5	75.7/74.7	
9-th	100	75.0/ 73.9	75.3/74.0	
	150	74.8/73.5	74.6/73.2	
11- <i>th</i>	50	74.3/72.7	74.4/73.0	
	100	74.0/72.8	74.2/72.7	
	150	74.3/70.1	73.5/72.5	

The ablation experiments of the method of pooling (Table 1):

Attention outperform average pooling in aligning frame-level representations and utterance-level labels; • However, as the number of layers and clusters increases, the average pooling performance approaches and gradually surpasses the attention pooling.

Performance comparison with previous methods (Table 2):

The proposed method achieves optimal performance compared to other recent research results. • Meanwhile, the performance of method we proposed **approximates that of some multimodal methods**. Table 2. Performance comparison of UA and WA with previous methods on IEMOCAP. The P-TAPT is baseline.

Type	Year	Methods	UA(%)	WA(%)
	2023	P-TAPT [15]	74.3	-
	2023	SMW-CAT [20]	74.2	73.8
Audio	2023	ShiftCNN [11]	74.8	72.8
	2023	SUPERB [13]	75.6	
	-	Ours	75.7	74.7
Multi-modal	2023	MTG [21]	75.0	74.5
Mulu-modal	2023	MSMSER [22]	76.4	75.2

Conclusions

D Proposing an effective frame-level emotional state alignment method based on **MLM for SER** and achieving outstanding performance.

D The performance is strongly correlated with the representation of the i-th transformer layer used for clustering and the number of clusters.

The QR of Paper

The QR of Code

More Information

Main References:

D Exploring wav2vec2.0 fine-tuning for improved speech emotion recognition, Chen et al., ICASSP 2023.

E-mail : liqifei@bupt.edu.cn