

LEARNING SPATIO-TEMPORAL RELATIONS WITH MULTI-SCALE INTEGRATED PERCEPTION FOR VIDEO ANOMALY DETECTION

Hongyu Ye, Ke Xu*, Xinghao Jiang, Tanfeng Sun Information Cognition Lab, Shanghai Jiao Tong University

INTRODUCTION

Motivation

- Anomalous events in surveillance videos tend to occur in restricted, even compact regions, possibly causing background dominance and thus increasing recognition difficulty.
- Anomalies vary in size and position. Current methods struggle to simultaneously detect potential anomalies across various scales.
- Fuse the output of MPSR with the clip feature, and then input them into an existing clip temporal relation(CTR) module.
- Send the output of CTR into a classifier to generate anomaly scores.

Training

Training is divided into two stages. Stage one trains the CTR module and classifier until convergence, while stage two freezes the network and separately trains the MPSR module.

Contributions

- Propose a multi-scale integrated perception learning method to capture scale-varying anomalies.
- Propose a MPSR network and a HGC block to model the relations among multi-scale patches concurrently.

METHOD

The Overall Pipeline

MPSR

the total loss function of our model is defined as follows:

$$\mathcal{L} = \mathcal{L}_{BCE} + \lambda_{fm} \mathcal{L}_{FM} + \lambda_1 \sum_t |s_t^+| + \lambda_2 \sum_t (s_t^+ - s_{t-1}^+)^2$$

where \mathcal{L}_{FM} is the feature magnitude based MIL ranking loss proposed by previous work.

RESULTS

Comparisons on two datasets. Our method achieves SOTA on ShanghaiTech and competitive results on UCF-Crime.

Cum	Mathad	Venue	Feature I3D	AUC@ROC ↑		
Sup.	Wiethod	venue		ShanghaiTech	UCF-Crime	
	GODS [22]	ICCV'19	I3D		70.46	
r L	STC-Graph [5]	MM'20		74.70	72.70	
Ŋ	GCL _{PT} [23]	CVPR'21	ResNext	AUC @J ShanghaiTech 74.70 78.93 84.44 86.21 76.44 89.67 91.57 85.33 - 94.83 97.21 97.48 <u>97.98</u> 97.84 - 97.60 98.00	71.04	
	Zhong et al. [3]	CVPR'19	TSN	84.44	82.12	
	GCL _{WS} [23]	CVPR ²¹	ResNext	86.21	71.04	
ıkly-	Zhong et al. [3]	CVPR'19		76.44	81.08	
eak	CLAWS [6]	ECCV'20	C3D	89.67	83.03	
M	RTFM [8]	ICCV'21		91.57	83.28	
	Sultani et al. [2]	CVPR'18		85.33	77.92	
	Wu et al. [13]	ECCV'20		1	82.44	
	MIST [1]	CVPR ²¹		94.83	82.30	
	RTFM [8]	ICCV'21		97.21	84.30	
	S3R [24]	ECCV ²²	12D	97.48	85.99	
	SSRL [9]	ECCV ²²	15D	97.98	87.43	
	SSRL(share parameters) [9]	ECCV ²²		97.84	86.85	
	UR-DMU [25]	AAAI [•] 23		_	86.97	
	CLAV [21]	CVPR ²³		97.60	86.10	
	Ours: MSIP		I3D	98.00	86.98	

Visual results on UCF-Crime test videos. Pink areas are temporal ground truths of anomalies.

Procedure

- Segment 480×840 clips into three sets of patches with varying scales: 240×280, 160×168, and 120×120.
- Leverage the pre-trained I3D to extract features of clips and patches.
- Pass the features of multi-scale patches into the multi-scale patch spatial relation (MPSR) network.
- Implement cross-scale feature learning and fusion using the hierarchical graph convolution(HGC) block.

CIK	MISK	noc	$(AUC@ROC \uparrow)$	$(AUC@ROC\uparrow)$	RTFM(CTR) [8]	I3D	24.7M	7.9G
\checkmark	×	×	84.30*	97.21*	SSRL [9]	I3D	192.0M	57.7G
\checkmark	\checkmark	X	86.09	97.37	SSRL(share parameters) [9]	I3D	79.8M	57.7G
\checkmark	\checkmark	\checkmark	86.98	98.00	Ours: MSIP	I3D	75.2M	17.0G

Ablation study on patch data scale variations in inputs.

240 imes 280	Patch Size 160 × 168	120 × 120	UCF-Crime (AUC@ROC ↑)	ShanghaiTech (AUC@ROC ↑)
×	×	×	84.30*	97.21*
\checkmark	×	X	85.85	97.69
×	\checkmark	×	85.83	97.63
×	×	\checkmark	85.49	97.58
\checkmark	\checkmark	X	86.24	97.84
\checkmark	×	\checkmark	86.71	97.74
×	\checkmark	\checkmark	86.69	97.75
\checkmark	\checkmark	\checkmark	86.98	98.00