

Unified Pretraining Target Based Video-Music Retrieval with Music Rhythm and Video Optical Flow Information Tianjun Mao, Shansong Liu, Yunxuan Zhang, Dian Li, Ying Shan School of Management Fudan University, ARC Lab Tencent PCG

Background

>Task: Video Background Recommendation

- Select an appropriate BGM for users' uploaded video
- > Challenges:
- **1.** Mismatch of target sets for video/music pretraining
- **2.** Underlying temporal correlation between

Framework

video and music is ignored

Innovations

Drawback1: Mismatch of modalities Innovation1:

- Collect a unified target set to match two modalities
- Cross-modality attention is adopted to fuse video and music modalities

Drawback2: Temporal correlation Motivation2:

- To adopt clip-level embeddings from pretrained Conformer
- To introduce optical flow and rhythm information

Fig. 1. Illustration of the unified pretraining target based cross-modal video-music retrieval (UT-CMVMR) framework.

Framework

> Pretrained Conformers on unified target set \succ Extraction of optimal flow and rhythm information **Fwo-Branch Structure** Cross-Modalities Attention Module Loss Function $\mathcal{L}_{av} = t(\theta_v^+, \theta_m^+, \theta_m^-) + t(\theta_m^+, \theta_v^+, \theta_v^-)$ > Triplet loss $\mathcal{L}_{vtag} = t(\theta_v^+, \theta_{tag}^+, \theta_v^-) + t(\theta_{tag}^+, \theta_v^+, \theta_{tag}^-) + t(\varphi_{tag}^+, \varphi_v^+, \varphi_v^-)$ $\mathcal{L}_{atag} = t(\theta_m^+, \theta_{tag}^+, \theta_m^-) + t(\theta_{tag}^+, \theta_m^+, \theta_m^-) + t(\varphi_{tag}^+, \varphi_m^+, \varphi_m^-)$

```
\blacktriangleright \text{Regularization loss } \mathcal{L}_{regular} = d(\xi_v, \xi_v^{rec}) + d(\xi_m, \xi_m^{rec}) + d(\varphi_v, \xi_{tag})
                                                                  + d(\varphi_m, \xi_{tag}) + d(\varphi_{tag}, \xi_{tag}) + d(\theta_v, \theta_{tag})
                                                                  + d(\theta_m, \theta_{tag})
```

```
\succ Cross-entropy matching loss \mathcal{L}_{ce}
```

Preparations

> Process

- Collect Unified Target Label Set
- Pretrain Comformers on video-tag pairs and audio-tag pairs
- \succ Length-normalized videos and music are chopped into clips
- > To get clip-level embeddings from Conformers
- > Video optical flow information: average pixel displacement between adjacent frames
- \succ Audio rhythm: number of beats+ average beat strength+average interval length

Experiments

Question1: Is it works better on our collected data?

Sys	Model	Setting	Recall@K (%)			
			K = 1	K = 5	K = 10	K = 25
1	CBVMR	1.5	4.54	15.69	27.71	43.35
2	CMVAE	AE	4.95	18.00	29.70	43.86
3		AE	5.13	19.83	30.32	44.80

Question2: How it works on HIMV-200K?

N. 1 1	Setting	Recall@K(%)				
Model		K=1	K=5	K=10	K=25	
CDVMD	AE	3.40	5.20	15.30	22.70	
CDVIVIK	SE&R	5.20	7.10	18.20	29.10	2
CMUAE	AE	4.70	9.10	17.00	41.20	3
CIVIVAL	SE&R	6.10	11.80	20.40	44.00	4
CMUMD	AE	9.70	13.90	21.30	45.90	5
	SE&R	10.80	28.10	36.50	51.60	6

4	(UT-)	A-SE	5.18	22.38	35.76	45.50
5	CMVMR	SE	5.58	21.02	35.80	46.11
6		SE&R	8.82	22.92	36.28	53.82

- > Effectiveness of CMVMR
- Sys. 3 vs. Sys. 1-2
- > Effectiveness of Unified Tag Set for Conformer Extractors
- Sys. 4 vs. Sys. 1-3
- Effectiveness of Temporal Information and Rhythm Information
- Temporal correlation: Sys. 5 vs. Sys. 4
- Rhythm information: Sys. 6 vs. Sys. 5

Question3: How it works for human evaluation?

Model	Our UT-CMVMR model	CBVMR	CMVAE
Preferred	50.00%	40.00%	10.00%

- With the addition of temporal information and rhythm information, it works better • (6) **VS**. (5)
- The framework of CMVMR is better than the baselines
- (1) (3)**VS**. (5)
- > 24 participants
- > 15 out of 24 people have knowledge of music theory
- > 21 out of 24 people maintain the habit of listening to music per week