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Fig. 1. Illustration of the unified pretraining target based cross-modal video-music retrieval (UT-CMVMR) framework.

» Framework
» Pretrained Conformers on unified target set
» Extraction of optimal flow and rhythm information
» Two-Branch Structure
» Cross-Modalities Attention Module

» Loss Function
» Triplet loss

Drawback1: Mismatch of modalities
Innovation1:

Collect a unified target set to match two
modalities

Cross-modality attention is adopted to fuse
video and music modalities
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Preparations

» Process

» Collect Unified Target Label Set

» Pretrain Comformers on video-tag pairs and audio-tag pairs

» Length-normalized videos and music are chopped into clips

» To get clip-level embeddings from Conformers

» Video optical flow information: average pixel displacement between adjacent frames
» Audio rhythm: number of beats+ average beat strength+average interval length

Experiments

Question1: Is it works better on our collected data? Question2: How it works on HIMV-200K?
Sys | Mod | Recall@K (%) , Recall @K(%)
0 el Settmg K: 1 K =5 K= 10 K= 25 Model Settlng K=1 K=5 K—l() K=25
1 | CBVMR 454 | 15.69 | 27.71 | 4335 AE | 3.40 | 520 [1530(22.70 @
AE CBVMR _

2 CMVAE 4.95 18.00 [ 29.70 43.86 SE&R | 5.20 | 7.10 [ 18.20129.10 ®
3 AE 5.13 19.83 30.32 44 .80 CMVAE AE 470 | 9.10 |17.00]41.20 ®
4 (UT-) A-SE 5.18 | 22.38 33.76 45.50 SE&R | 6.10 [11.80]20.40(44.00 @
5 | CMVMR | SE 558 | 21.02 | 3580 | 46.11 F—— AE |9.70 [13.90(/21.30[45.90 ®
6 SE&R | 8.82 | 22.92 | 36.28 53.82 SE&R [10.80 [28.10/36.50|51.60 ©®

» Effectiveness of CMVMR

¢ Sys. 3 vs. Sys. 1-2

» Effectiveness of Unified Tag Set for Conformer Extractors

* Sys. 4 vs. Sys. 1-3

» Effectiveness of Temporal Information and Rhythm Information
 Temporal correlation: Sys. 5 vs. Sys. 4

 Rhythm information: Sys. 6 vs. Sys. 5

Question3: How it works for human evaluation?

Model |Our UT-CMVMR model | CBVMR |CMVAE
Preterred 50.00% 40.00% | 10.00%

® With the addition of temporal information
and rhythm information, it works better

® B vs. (B

® The framework of CMVMR is beftter than the
baselines

® (D @®vs.H

»> 24 participants
> 15 out of 24 people have knowledge of music theory
» 21 out of 24 people maintain the habit of listening to music per week



