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ABSTRACT

Recurrently refining the optical flow based on a single high-
resolution feature demonstrates high performance. We ex-
ploit the strength of this strategy to build a novel architec-
ture for the joint learning of optical flow and depth. Our pro-
posed architecture is improved to work in the case of train-
ing on unlabeled data, which is extremely challenging. The
loss is computed for the iterations carried out over a single
high-resolution feature, where the reconstruction loss fails
to optimize the accuracy particularity in occluded regions.
Therefore, we propose to hierarchically refine the optical flow
across multiple scales while feeding the rigid flow calculated
from depth and camera pose to provide more refinement. We
further propose a self-supervised patch-based similarity loss
to be optimized with the reconstruction loss to improve accu-
racy in the occluded regions. Our proposed method demon-
strates efficient performance on the KITTI 2015 dataset, with
more improvement in the occluded regions.

Index Terms— Optical flow estimation, depth estima-
tion, joint learning, self-supervised learning, occlusion han-
dling.

1. INTRODUCTION

The joint learning of optical flow and depth is important to
provide more information to reconstruct the scene flow, which
is useful for different applications such as autonomous vehi-
cles and mobile robots. However, improving them through
joint learning is challenging since each task is constrained by
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the other, which hinders them from getting an optimal solu-
tion, as if they were estimated separately. On the other hand,
resolving some issues with one task and improving its perfor-
mance could also provide useful cues to enhance the other
task. Various methods for training optical flow and depth
methods rely on the availability of the ground truth to pro-
vide direct and accurate supervision for their models. Since
providing enough annotated and real-world datasets is expen-
sive in laboratories, training on an unannotated dataset can be
considered a good alternative, but it comes at the expense of
providing more constraints to bridge the gap with the super-
vised methods. The training on an unannotated dataset heav-
ily depends on reducing the difference between the reference
image and its reconstruction from the estimated optical flow
or depth. The occluded parts are naturally excluded, as they
cause a significant error.

Different network architectures that have been adopted for
the supervised learning of optical flow have been adapted to
work under the unsupervised situation, such as OAFlow [1]
which adopts the FlowNet [2] as the baseline with occlusion
handling techniques to avoid their direct influence on the esti-
mated flow. ARFlow [3] utilizes the PWC-Net [4] with more
advanced techniques to allow the network to learn the flow in
occluded regions and to be more effective and reliable in chal-
lenging scenes. SMUREF [5] improved the RAFT [6] architec-
ture by proposing a full-image warping operation to reduce
the occlusions that result from out-of-frame motion. There-
fore, the occlusion is considered the critical part that should
be carefully handled in the absence of supervision from the
ground truth.

In the joint learning of optical flow and depth, this prob-
lem exacerbates since the wrongly estimated regions have
a mutual negative impact on each task. Self-Mono-SF [7]
uses the PWC-Net as a baseline, infers the occlusion cues
via the bi-directional estimation process, and involves it in
an occlusion-aware loss for scene flow and disparity estima-
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Fig. 1: Our proposed architecture for the joint learning of
optical flow and depth. D is the depth, F' is the optical flow,
and Fi. is the rigid flow.

tion. DRAFT [8] utilizes the RAFT as a baseline, initializes
the triangulated depth from the optical flow, and estimates
an occlusion mask to remove spurious information from the
self-supervised and consistency losses. In this paper, we
propose a novel architecture for the joint learning of depth
and optical flow. Our architecture joins the strength of the
RAFT by utilizing the global correlation, refining the optical
flow using the gated recurrent unit (GRU), and the strength
of the pyramid scheme of the PWC-Net by performing this
refinement on different scales. The key insight is to avoid
the significant error related to refining the optical flow over
a single high-resolution feature that resulted from the train-
ing on unlabeled datasets using the reconstruction loss that
ignores the occluded regions. In addition, our architecture
adopts a single-iteration multi-scale strategy instead of a
multi-iteration single-scale strategy for the training on an
unlabeled dataset, where increasing the number of iterations
will bring more computation overhead without significant
improvement. The reason is that the error that resulted from
the first iteration due to the occlusion is high, and increas-
ing the number of iterations cannot remedy it. Instead of
increasing the iterations, we use the depth to refine the optical
flow, which demonstrates a remarkable enhancement in the
occluded regions, as shown by our experiments. Besides this
architecture, we propose a self-supervised patch-based simi-
larity loss that is added to the reconstruction loss to reduce the
error in the occluded regions. The key idea is to reduce the
difference between the estimated optical flow in the occluded
regions and their most similar neighbors in a patch-based
scheme. We can summarize our contributions as follows:

* We propose a novel multi-scale hierarchical refinement

architecture with a multi-scale single-iteration strategy
for the joint learning of optical flow and depth on an
unlabeled dataset that can hierarchically refine the op-
tical flow across multiple scales, allowing the network
to learn better optical flow, particularly in occluded re-
gions.

* We propose a novel self-supervised patch-based simi-
larity loss to ensure consistency between the matched
and unmatched regions, utilizing a kernel-like search-
ing scheme that demonstrates its efficiency in alleviat-
ing the occlusion impact on the estimated optical flow.

e Our proposed method achieves competitive results
compared to the state-of-the-art methods for the joint
learning of optical flow and depth tasks on the KITTI
2015 scene flow dataset.

2. METHOD

2.1. Proposed architecture

Fig. 1 shows the overall architecture of our proposed method.
We jointly train two networks, the optical flow and depth net-
works. For the depth network, the input is a stereo image, and
only single-scale single-iteration is adopted to estimate the
depth map. The attention module [9] is used for flow prop-
agation. Working on a single high-resolution scale provides
a simple yet fast network. The occluded regions due to the
left-right shift between the stereo pairs have no significant ef-
fect as in the occluded regions of the optical flow since the
displacement is not large. In the optical flow, the occluded
regions increase with increasing resolution, thereby increas-
ing the error. Therefore, we propose to add multiple scales
with only one iteration in order to allow the network to catch
the large movements from the lower resolutions and use them
to refine the higher resolution with the GRU. Three feature
scales are extracted: %, %, and 3% of the size of the origi-
nal image. We utilize the all-to-all correlation as proposed in
RAFT [6] but with different pyramid scales according to the
feature size. The correlation pyramid has scales 4, 3, and 1
for the three scales, from higher to lower, respectively. Each
correlation pyramid is passed along with the context features
to the GRU to estimate the optical flow. The estimated flow
at each scale is added to the upsampled flow of the previous
scale after multiplying the upsampled flow with an estimated
mask from the reference image to avoid inaccurate propaga-
tion. The estimated depth and optical flow at the higher scale
are used to estimate the camera pose using the Pn P method
[10] which is then used along with the depth to find the rigid
flow. Finally, we use the rigid flow to refine the optical flow
by minimizing the difference between the optical flow and the
rigid flow in the static regions where the rigid flow is more ac-
curate, as suggested by [10].
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2.2. Training losses

The reconstruction losses are utilized for training on the un-
labeled dataset for both the optical flow and depth networks,
as proposed by [10]. Beside these losses, we remedy the oc-
cluded parts in the optical flow by reducing the difference be-
tween the estimated flow of the occluded pixels and the esti-
mated flow of their neighbors from the non-occluded regions
that have the largest similarity with them:

Lom = >, Sim(P{, PP°) . ||F; = Fylla, (1)

,JER
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Sim (P, P'°) = 1 — exp(—
€
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where P°¢ is the occluded pixel at index 7 of the reference
image R, P}*°¢ is the non-occluded pixel at index j of the
reference image R, and the softmax temperature € is a hyper-
parameter and set to 0.45. F; and F; are the estimated optical
flows for the pixels at indices ¢ and j respectively. However,
this per-pixel operation is extremely expensive and slows
down the training process. Therefore, we propose patch-
based loss. In this loss, we divide the image into patches, and
a kernel with a size of 3 x 3 is moved over these patches,
where each location in this kernel is a patch of pixels. Then,
we check the similarity between the center patch and its
neighbor patches and multiply it by the difference between
the optical flow of the center patch and its neighbor patches
to calculate the loss as follows:

Lgim = Z Sim(Pth) . ||Fpi - ij||27 3)
JEN

where P; is the center patch and P; are the neighbor patches
N which are 8 patches according to our 3 x 3 kernel. F);
is the optical flow for the pixels in the center patch, and F};
is the optical flow for the neighbor patches. The similarity is
calculated as in the equation 2. We set the flow values of the
occluded pixels to zero to avoid their influence on the neigh-
boring pixels.

3. EXPERIMENTAL RESULTS

3.1. Settings

Our method is trained on the unlabeled KITTI raw dataset
[11] that has a total of 28,968 images out of 42,382 images af-
ter excluding the images that are included in the KITTI 2015
training dataset. For optical flow and depth validation, the
KITTI 2015 training dataset [12] is used with the correspond-
ing ground truth. The input images for depth and optical flow
training and testing are resized to 256 x 832, and we extract
the features at the scales of £, -, and 3. We initially warm
up the optical flow network for 215K iterations with batch
size=8, and we warm up the depth network for 81K itera-
tions with batch size=10 on the KITTI raw [11] for both tasks.

Table 1: Quantitative results of optical flow estimation on
KITTI 2015. Bold indicates the best results.

Method Average EPE Fl1-all
GeoNet [13] 10.81 —

DF-Net [14] 8.98 26.01%
Self-Mono-SF [7] 7.51 23.49%
Bridging-Net [15] 7.13 27.13%
Wang et al. [16] 6.66 23.04%
CC [17] 6.21 26.41%
Unos [18] 5.58 —

Matteo et al. [19] 5.39 20.00%
UnRigidFlow [10] 5.19 14.68%
Ours 5.51 14.60%

Then, we start the joint training of the optical flow and depth
networks for 200K iterations with batch size=10 on the KITTI
2015 scene flow dataset [12].

3.2. Quantitative results

Table. 1 reports the results for the optical flow. For a fair com-
parison, we compared our method with the methods that use
joint training, as they are considered more challenging than
the methods that estimate the optical flow separately. All the
stated methods are trained on the unlabeled KITTI datasets.
Our method achieves the best F; and a competitive end point
error compared to the previous methods. For the depth es-
timation, our method surpasses the previous methods, as re-
ported in Table. 2. Fig. 2 shows a visualization comparisons
on samples from KITTI 2015 scene flow dataset.

3.3. Ablation study

The proposed architecture and loss. Table. 3 reports the
results compared to using the original RAFT architecture that
is trained on unlabeled dataset as a baseline. Our proposed
loss shows a remarkable enhancement, particularly in the un-
matched (occluded) regions. Our architecture significantly
improves the overall accuracy compared to the baseline by
a large margin. All contributions together achieve the best
accuracy, with a slight increase in the outliers.

Patch size in similarity loss. For each location in our pro-
posed loss with the 3 x 3 kernel, we tried different patch sizes:
9, 15, and 35. Our ablation is carried out using the RAFT ar-
chitecture without any improvements. Table. 4 reports the
results. The patch size of 9 pixels improves the overall accu-
racy, including the accuracy in both matched (non-occluded)
and unmatched (occluded) regions. The size 15 improves the
accuracy more in the occluded regions, but it starts to affect
the flow in non-occluded regions by bringing unreliable val-
ues from the long-range context. For the size of 35, the result
shows that despite the fact that the accuracy improved over the
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Table 2: Quantitative results of depth estimation conducted on KITTI 2015 training set (KITTI split). Depth errors in middle
columns and prediction accuracy in right columns are used for evaluation. t indicates Eigen split. Bold indicates the best
results.

Method Stereo Error  (lower is better) Accuracy, (higher is better)
AbsRel SqRel RMSE RMSlog §<1.25 §<1.252 §< 1.25°

CC[17] 0.140 1.070 5.326 0.217 0.826 0.941 0.975
Matteo et al. [19] v 0.118 0.748 4.608 0.186 0.865 0.961 0.985
Self-Mono-SF [7] 0.106 0.888 4.853 0.175 0.879 0.965 0.987
Bridging-Net [15] v 0.087 0.765 4.380 0.184 0.906 0.959 0.978
RAFT-MSF [20] 0.082 0.726 4.165 0.148 0.921 0.971 0.986
DRAFT [8] t 0.097 0.647 3.991 0.169 0.899 0.968 0.984
MonoDepth [21] v 0.068 0.835 4.392 0.146 0.942 0.978 0.989
Ours v 0.062 0.682 4.169 0.137 0.947 0.979 0.990

Table 3: Ablation on the effectiveness of each contribution on the optical flow results. Bold indicates the best results.

Baseline Architecture Loss EPE-all EPE-match EPE-unmatch F1-all

v 8.12 391 23.61 23.56%
v v 6.01 3.68 14.91 17.71%
v v 5.66 3.37 15.06 14.51%
v v v 5.51 3.32 14.54 14.60%

Table 4: Ablation on patch size for similarity loss of the optical flow task. Bold indicates the best results.

Patch_size EPE-all EPE-matched EPE-unmatched Fl-all
No-loss 8.12 391 23.61 23.56%
9 6.01 3.68 14.91 17.71%
15 6.05 3.76 14.85 17.85%
35 6.13 3.86 14.87 18.28%
Target image Ground truth Baseline flow Our flow

Reference image

-
A

=

Fig. 2: Visualization comparison between the estimated flow from the baseline and from our method on samples from KITTI
2015 dataset.

baseline in the occluded regions, the error in the non-occluded
regions and the outliers increased significantly. For a moder-
ate solution, we adopted the size of 9 in our method and final

results.
4. CONCLUSION

In this paper, we provide a new method for joint learning of
optical flow and depth that addresses occlusion in the case of
unlabeled dataset training. We suggested an innovative design
that uses a single-iteration, multi-scale strategy to optimize

optical flow at multiple scales. More cues learned from the es-
timated depth are fed into each refining layer to help improve
the optical flow. Furthermore, we presented a self-supervised
patch-based similarity loss that is optimized with the recon-
struction loss to help the network improve its estimated opti-
cal flow, particularly in occluded regions. On the KITTI 2015
scene flow dataset, our technique considerably enhances the
accuracy of the estimated depth and optical flow. More exper-
iments and details will be provided in a future work.
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