MLPs Compass：What is learned when MLPs are combined with PLMs？

Li Zhou，Wenyu Chen，Yong Cao，Dingyi Zeng，Wanlong Liu，Hong Qu

อ（）Motivation

Traditional method

Observation

Performance improves when applying

 MLPs without structural bias on pre－ trained language models for the relation extraction task| | ReTACRED | SemEval |
| :--- | ---: | ---: |
| BERT | 87.66 ± 0.18 | 91.07 ± 0.26 |
| BERT＋MLPs | 88.05 ± 0.21 | 91.31 ± 0.23 |

Research Question

1）What can be learned when basic MLPs are integrated with the transformer structure in PLMs？

2）Does layer sensitivity exist in the performance changes when combining MLPs and PLM？

3）In the enhancement of PLMs with MLPs，which aspect of linguistic information understanding is MLPs particularly skilled at improving？

Method

Probing Framework

All parameters inside the dashed line and the embedding layer are fixed．

Probing Tasks

Two surface tasks
Three syntactic tasks
Five semantic tasks

Conclusion

1．Our extensive experiments，encom－ passing 10 probing tasks spanning 3 linguistic levels，demonstrate the sup－ erior performance of our proposed framework．

2．MLPs can boost PLMs in capturing addi－ tional surface，syntactic，and semantic information，with a stronger capacity for enhancing the latter two．
3．When leveraging high－layer represent－ tations from PLMs，MLPs exhibit a greater ability to acquire additional information．

4．Our work provides interpretable and valuable insights into crafting varia－ tions of PLMs utilizing MLPs for tasks that emphasize diverse linguistic structures．

运道 Experiment

RQ1：Layer－wise Results

Layers	Surface				Syntactic					
	SentLen（6）		WC（1000）		TreeDepth（7）		TopConst（20）		BShift（2）	
	w／o	w								
1	85.83 ± 0.95	86.19 ± 1.17	0.56 ± 0.05	0.12 ± 0.04	1.60 ± 0.58	31.09 ± 1.17	46.12 ± 0.28	48.54 ± 0.16	50.00 ± 0.00	50.01 ± 0.01
2	91.60 ± 0.40	91.49 ± 1.35	2.35 ± 0.10	1.06 ± 0.08	34.68 ± 0.59	35.58 ± 0.29	58.19 ± 0.41	60.2 ± 0.43	51.81 ± 1.05	50.00 ± 0.00
3	92.31 ± 0.48	$\mathbf{9 2 . 8 5} \pm 0.56$	1.50 ± 0.17	0.58 ± 0.05	33.98 ± 0.37	34.3 ± 0.38	56.77 ± 0.18	58.97 ± 0.65	58.13 ± 1.78	50.00 ± 0.00
4	89.70 ± 0.79	89.66 ± 0.58	19.83 ± 0.71	15.05 ± 0.83	33.08 ± 0.45	32.74 ± 1.60	54.50 ± 0.40	56.60 ± 0.51	69.74 ± 1.47	68.83 ± 2.12
5	85.00 ± 0.72	84.55 ± 0.78	19.47 ± 0.62	16.26 ± 0.81	33.90 ± 0.97	34.08 ± 0.76	73.93 ± 0.11	75.69 ± 0.49	78.44 ± 0.32	77.99 ± 0.40
6	81.10 ± 0.81	81.46 ± 0.49	13.79 ± 0.47	10.57 ± 0.74	35.22 ± 0.38	34.97 ± 1.36	78．86 ± 0.13	80.0 ± 0.50	80.68 ± 0.14	79.33 ± 1.11
7	78.52 ± 0.86	78.47 ± 0.66	10.33 ± 0.30	9.90 ± 0.33	34.98 ± 0.53	35.64 ± 0.56	80.32 ± 0.15	80.96 ± 0.10	81.25 ± 0.14	81.33 ± 0.17
8	76.99 ± 1.06	77.01 ± 1.17	7.99 ± 0.15	7.27 ± 0.19	34.15 ± 0.44	34.54 ± 0.22	79.55 ± 0.20	80.35 ± 0.34	81.98 ± 0.25	81.86 ± 0.29
9	74.15 ± 0.45	74.21 ± 0.96	9.14 ± 0.08	9.27 ± 0.20	34.06 ± 0.36	34.60 ± 0.34	79.52 ± 0.24	80.38 ± 0.32	85.51 ± 0.19	85.70 ± 0.13
10	72.82 ± 0.21	73.01 ± 0.88	9.41 ± 0.16	9.11 ± 0.36	33.72 ± 0.66	34.31 ± 0.33	78.76 ± 0.23	79.87 ± 0.26	85.72 ± 0.18	85.90 ± 0.09
11	68.88 ± 0.32	69．96 ± 0.89	10.59 ± 0.28	10.75 ± 0.28	32.75 ± 0.32	33.76 ± 0.77	77．02 ± 0.15	78.42 ± 0.28	85.86 ± 0.15	85.98 ± 0.19
12	64.35 ± 0.26	66.34 ± 0.89	14.26 ± 0.24	14.82 ± 0.54	31.39 ± 0.39	32.82 ± 0.46	72.86 ± 0.16	74.52 ± 0.13	86.13 ± 0.08	86.20 ± 0.30

Layers	Semantic									
	Tense（2）		SubjNum（2）		ObjNum（2）		SOMO（2）		CoordInv（2）	
	w／o	w								
1	78.58 ± 0.25	77．92 ± 0.47	73.39 ± 0.41	73.53 ± 0.18	71.08 ± 0.46	70.70 ± 0.75	49.98 ± 0.13	49.97 ± 0.13	50.00 ± 0.00	50.00 ± 0.00
2	84.34 ± 0.27	84.33 ± 0.54	79.02 ± 0.20	78.80 ± 0.23	77.31 ± 0.67	77.11 ± 1.18	51.20 ± 1.08	49.97 ± 0.13	52.31 ± 1.21	50.00 ± 0.00
3	85.45 ± 0.30	85.51 ± 0.37	79.44 ± 0.13	79.38 ± 0.20	76.27 ± 1.43	76.44 ± 0.76	55.04 ± 0.49	49.97 ± 0.13	50.74 ± 0.95	50.00 ± 0.00
4	86.33 ± 0.34	86.37 ± 0.49	79.51 ± 0.23	79.15 ± 0.47	77.73 ± 0.90	78.10 ± 0.09	57.88 ± 0.14	57.23 ± 0.35	51.59 ± 0.94	50.00 ± 0.00
5	88.63 ± 0.16	88.85 ± 0.29	83.40 ± 0.43	83.48 ± 0.40	78.48 ± 0.60	79.01 ± 0.27	59.33 ± 0.30	58.98 ± 0.48	57.72 ± 1.15	50.01 ± 0.01
6	88.60 ± 0.28	88.85 ± 0.27	86.34 ± 0.24	86.08 ± 0.91	79.12 ± 0.62	79.13 ± 0.50	59.68 ± 0.12	59.29 ± 0.28	63.73 ± 1.14	64.07 ± 0.51
7	88．86 ± 0.18	89.19 ± 0.25	85.76 ± 0.29	85．91 ± 0.47	79.73 ± 0.48	79.08 ± 0.19	60.42 ± 0.37	59.94 ± 0.49	69.66 ± 1.05	70.86 ± 0.95
8	89.16 ± 0.14	89.46 ± 0.29	85.96 ± 0.32	85.82 ± 0.60	79.02 ± 0.26	79.15 ± 0.33	60.32 ± 0.42	59.68 ± 0.61	71.14 ± 0.86	72.41 ± 0.57
9	89.21 ± 0.08	89.43 ± 0.26	86.66 ± 0.11	86.69 ± 0.23	79.21 ± 0.40	79.50 ± 0.12	62.37 ± 0.14	61.96 ± 0.31	73.74 ± 0.82	74.53 ± 0.77
10	89.10 ± 0.08	89.47 ± 0.21	85.98 ± 0.26	86.03 ± 0.14	78.14 ± 0.26	78.17 ± 0.38	62.70 ± 0.19	62.41 ± 0.34	73.82 ± 1.17	75.52 ± 0.86
11	88.86 ± 0.31	89.46 ± 0.20	83.56 ± 0.50	84.47 ± 0.25	77.09 ± 0.23	77.07 ± 0.41	63.55 ± 0.15	63.28 ± 0.30	73.27 ± 0.53	74.68 ± 0.65
12	88.87 ± 0.27	89.39 ± 0.11	82.26 ± 0.18	82.97 ± 0.44	77.88 ± 0.22	77.91 ± 0.31	64.00 ± 0.21	64.09 ± 0.20	71.25 ± 0.69	72.38 ± 0.52

In most layers of the probing experiments，combining MLPs with PLM can improve the performance of the probing tasks at three different levels．

RQ2：Laver Sensitivity

The ability of MLPs to capture additional language information varies across BERT＇s middle and lower－level layers，while consistently proving beneficial in its higher layers．

RQ3：Linguistic Information Comparison

	Surface	Syntactic	Semantic		Clustering performance with
NMI（w／o）	0.60	0.14	0.07		
NMI（w）	0.66	0.57	0.49	Normalized Mutual	
Δ NMI	$0.06(\uparrow)$	$0.43(\uparrow)$	$0.42(\uparrow)$	Information（NMI）．	

MLPs are better at capturing both syntactic and semantic information compared to surface one．

