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SUMMARY
•Use stricter objective function
•Convert combinatorial to gradient-based optimization
• relaxing constraint of permutation matrix to that of doubly stochastic matrix

•Apply manifold optimization
•Significantly larger SDR improvement compared with AuxIVA and ILRMA

1. Frequency-domain BSS
2-step approach (2000s)
• Independent component analysis ( ICA) in each
frequency bin
•Resolve amplitude and permutation ambiguities

1-step approach (2006–)
• Independent vector analysis ( IVA), Independent
low-rank matrix analysis ( ILRMA)
•No need to align permutation
• speech in time-frequency domain is modelled by
multivariate probability function

Sparse Unitary-constrained FD-ICA (2020, [1])
•Use Riemannian optimization
• 2-step apporach is still competitive with 1-step
approach.

Question
•Can we further improve the state-of-the-art
permutation alignment method?

Idea for solution
• Stricter objective function
• From combinatorial optimization of permutation

To gradient optimization of doubly-stochastic matrix

2. Conventional 2-step approach
2.1. Frequency-domain (FD) ICA
•N sound sources and N microphones in ordinary room
•Transform to FD by frame-wise STFT

X(l, f ) = H(f )S(l, f ) (1)
l: frame’s indices
f : frequency indices
X(l, f ): microphone signals (N × 1)
H(f ): acoustic paths (N ×N)

•Complex-valued instantaneous BSS algorithm separate
each source element Y(l, f )

Y(l, f ) = W(f )X(l, f ) (2)
W(f ): unmixing filters (N ×N)
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2.2. Remaining Ambiguities
Ambiguities of scaling and permutation in each f

S(l, f ) ∼= D(f )Λ(f )Y(l, f ), (3)
Λ(f ): scaling matrix
D(f ): permutation matrix
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2.3. Inter-frequency similarity measure
Consider estimates after projection back

Y(l, f ) = Λ(f )Y(l, f ) = Λ(f )W(l, f )X(l, f ). (4)
•Murata et al. (2001) proposed correlation coefficients
between the envelopes |Yi(:, f )|
• Sawada et al. (2007) proposed power ratio sequence
(PRS) converted from |Yi(:, f )| as
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Objective function (Sawada et al. 2007)
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Tn(l): average PRS over frequency of nth source
Π̂f : estimated permutation at f
cov(•): covariance
σ(•): standard deviation

3. Permutation alignment using gradient
3.1. Stricter objective function
Objective function incorporating all pairs of frequency bins
(f, g) without averaging
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gD(g)T
)

(9)

where
• permutation is expressed by
PN =

{
D ∈ {0, 1}N×N : D1N = 1N , DT1N = 1N

}
, (10)

D: sparse, square binary matrix in which each column
and each row contains only a single 1.

• Ṽf : N × L matrix. Its i-th row vector is
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Combinatorial optimization is required to obtain D(f ).

3.2. Relaxation to DPN [2]
Relax permutation matrices with doubly-stochastic (DS)
matrices defined as
DPN =

{
D ∈ RN×N : Dij > 0,D1N = 1N ,DT1N = 1N

}
. (12)

Combinatorial optimization problem
→ a gradient-based one on DPN embedded in RN×N .

3.3. Manifold optimization [2]
Euclidean gradient of J(•) in RN×N
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is projected on the tangent space TXDPN at X = D(f )
using projection operator

ΠX (Y) = Y − (α1T + 1βT )�X , (14)
α = (I−XX T )†(Y − XYT )I,
β = YT1−X Tα,

with step-size µ as

ξ(f ) = µ ΠX
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where �: element-wise product, Z†: left-pseudo inverse.
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D(f ) is updated as
D(f )← R(X , ξ(f )) = P (X � exp(ξ(f )�X )) (16)

where retraction R(X , ξ(f )) maps ξ(f ) to DPN , �:
element-wise division, P (•): projection onto DPN
obtained using the Sinkhorn-Knopp algorithm

4. Evaluation
•Artificial impulse response T60 = 200 - 500 ms
• 16-kHz sampling, 3072-point FFT ( 192 ms)
•N(= 2, 3, 4, 5)-source cases
•Eight combination of N utterances of males and
female speakers
• 40-dB signal-to-noise ratio
•Use L = 100 frames (9.6 s) and µ = 1.0
•Use result of Sawada’s method as initial condition
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(b) with N = 4 under various T60s
Processing-time in seconds

Method 2 ch 3 ch 4 ch 5 ch
SU-FDICA 19.8 35.7 33.7 39.3
+ Sawada + 0.1 + 2.8 +5.3 +13.8

AuxIVA 3.6 6.0 8.5 12.1
ILRMA 23.2 41.4 57.5 76.2
SU -FDICA 19.8 35.7 33.7 39.3
+Sawada+Proposed +70.6 +74.7 +78.3 +89.3

[1] S. Emura et al., A frequency-domain BSS method based on L1
norm, unitary constraint, and Cayley transform, ICASSP2020.
[2] A. Douik and B. Hassibi, Manifold optimization over the set of
doubly stochastic matrices, IEEE Trans. Signal process., 2019.


