Permutation-alignment method using manifold optimization for frequency-domain blind source separation

S. Emura
Kyoto university of advanced science

SUMMARY

- Use stricter objective function
- Convert combinatorial to gradient-based optimization
- relaxing constraint of permutation matrix to that of doubly stochastic matrix
- Apply manifold optimization
- Significantly larger SDR improvement compared with AuxIVA and ILRMA

1. Frequency-domain BSS

2-step approach (2000s)

- Independent component analysis (ICA) in each frequency bin
- Resolve amplitude and permutation ambiguities

1-step approach (2006-)

- Independent vector analysis (IVA), Independent low-rank matrix analysis (ILRMA)
- No need to align permutation
- speech in time-frequency domain is modelled by multivariate probability function

Sparse Unitary-constrained FD-ICA (2020, [1])

- Use Riemannian optimization
- 2-step apporach is still competitive with 1-step approach.

Question

- Can we further improve the state-of-the-art permutation alignment method?

Idea for solution

- Stricter objective function
- From combinatorial optimization of permutation To gradient optimization of doubly-stochastic matrix

2. Conventional 2-step approach

2.1. Frequency-domain (FD) ICA

- N sound sources and N microphones in ordinary room
- Transform to FD by frame-wise STFT

$$
\begin{equation*}
\mathbf{X}(l, f)=\mathbf{H}(f) \mathbf{S}(l, f) \tag{1}
\end{equation*}
$$

$l: \quad$ frame's indices
$f: \quad$ frequency indices
$\mathbf{X}(l, f)$: microphone signals $(N \times 1)$
$\mathbf{H}(f)$: acoustic paths $(N \times N)$

- Complex-valued instantaneous BSS algorithm separate each source element $\mathbf{Y}(l, f)$

$$
\begin{align*}
& \mathbf{Y}(l, f)=\mathbf{W}(f) \mathbf{X}(l, f) \tag{2}\\
& \quad \mathbf{W}(f): \text { unmixing filters }(N \times N)
\end{align*}
$$

2.2. Remaining Ambiguities

Ambiguities of scaling and permutation in each f $\mathbf{S}(l, f) \cong \mathbf{D}(f) \boldsymbol{\Lambda}(f) \mathbf{Y}(l, f)$,
$\boldsymbol{\Lambda}(f)$: scaling matrix
$\mathbf{D}(f)$: permutation matrix

2.3. Inter-frequency similarity measure

Consider estimates after projection back

$$
\begin{equation*}
\underline{\mathbf{Y}}(l, f)=\boldsymbol{\Lambda}(f) \mathbf{Y}(l, f)=\boldsymbol{\Lambda}(f) \mathbf{W}(l, f) \mathbf{X}(l, f) . \tag{4}
\end{equation*}
$$

- Murata et al. (2001) proposed correlation coefficients between the envelopes $\left|\underline{Y_{i}}(:, f)\right|$
- Sawada et al. (2007) proposed power ratio sequence (PRS) converted from $\left|\underline{Y_{i}}(:, f)\right|$ as

$$
\begin{equation*}
V_{i}^{f}(l)=\left|\underline{Y_{i}}(l, f)\right|^{2} / \sum_{j=1}^{N}\left|\underline{Y_{j}}(l, f)\right|^{2} \tag{5}
\end{equation*}
$$

Objective function (Sawada et al. 2007)

$$
\begin{align*}
J_{s}\left(\hat{\Pi}_{1}, \cdots, \hat{\Pi}_{F}\right) & =\left.\sum_{f=1}^{F} \sum_{n=1}^{N} \rho\left(T_{n}(l), V_{i}^{f}(l)\right)\right|_{i=\hat{\Pi}_{f}(n)} \tag{6}\\
\rho\left(T_{n}(l), V_{i}^{f}(l)\right) & =\operatorname{cov}\left(\frac{T_{n}(l)}{\sigma\left(T_{n}(l)\right)}, \frac{V_{i}^{f}(l)}{\sigma\left(V_{i}^{f}(l)\right)}\right) \tag{7}
\end{align*}
$$

$T_{n}(l)$: average PRS over frequency of nth source
$\hat{\Pi}_{f}$: estimated permutation at f
$\operatorname{cov}(\bullet)$: covariance
$\sigma(\bullet)$: standard deviation

3. Permutation alignment using gradient

3.1. Stricter objective function

Objective function incorporating all pairs of frequency bins (f, g) without averaging

$$
\begin{equation*}
J_{o}\left(\hat{\Pi}_{1}, \cdots, \hat{\Pi}_{F}\right)=\sum_{n=1}^{N} \sum_{f=1}^{F} \sum_{g=1, g \neq f}^{F} \rho\left(V_{\Pi_{f}(n)}^{f}(l), V_{\Pi_{g}(n)}^{g}(l)\right) . \tag{8}
\end{equation*}
$$

$J(\mathbf{D}(1), \cdots$

$$
\begin{equation*}
, \mathbf{D}(F))=\sum_{f=1}^{F} \sum_{g=1, g \neq f}^{F} \frac{1}{L} \operatorname{Tr}\left(\mathbf{D}(f) \tilde{\mathbf{V}}_{f} \tilde{\mathbf{V}}_{g}^{T} \mathbf{D}(g)^{T}\right) \tag{9}
\end{equation*}
$$

where

- permutation is expressed by
$\mathbb{P}_{N}=\left\{\mathbf{D} \in\{0,1\}^{N \times N}: \mathbf{D} 1_{N}=\mathbf{1}_{N}, \mathbf{D}^{T} \mathbf{1}_{N}=\mathbf{1}_{N}\right\}$,
D: sparse, square binary matrix in which each column and each row contains only a single 1 .
- $\tilde{\mathbf{V}}_{f}: N \times L$ matrix. Its i-th row vector is

$$
\begin{equation*}
\left[V_{i}^{f}(1), \cdots, V_{i}^{f}(L)\right] / \sigma\left(V_{i}^{f}(l)\right) \tag{11}
\end{equation*}
$$

Combinatorial optimization is required to obtain $\mathbf{D}(f)$.
3.2. Relaxation to $\mathbb{D P}_{N}$ [2]

Relax permutation matrices with doubly-stochastic (DS) matrices defined as
$\mathbb{D P}_{N}=\left\{\mathbf{D} \in \mathbb{R}^{N \times N}: D_{i j}>0, \mathbf{D 1}_{N}=\mathbf{1}_{N}, \mathbf{D}^{T} \mathbf{1}_{N}=\mathbf{1}_{N}\right\}$.
Combinatorial optimization problem
\rightarrow a gradient-based one on $\mathbb{D P}_{N}$ embedded in $\mathbb{R}^{N \times N}$
3.3. Manifold optimization [2]

Euclidean gradient of $J(\bullet)$ in $\mathbb{R}^{N \times N}$

$$
\begin{equation*}
\frac{\partial J}{\partial \mathbf{D}(f)}=\frac{1}{L} \sum_{g=1, g \neq f}^{F} \mathbf{D}(g) \tilde{\mathbf{V}}_{g} \tilde{\mathbf{V}}_{f}^{T} \tag{13}
\end{equation*}
$$

is projected on the tangent space $T_{\mathcal{X}} \mathbb{D P}_{N}$ at $\mathcal{X}=\mathbf{D}(f)$ using projection operator

$$
\begin{align*}
\Pi_{\mathcal{X}}(\mathcal{Y}) & =\mathcal{Y}-\left(\alpha \mathbf{1}^{T}+\mathbf{1} \beta^{T}\right) \odot \mathcal{X} \tag{14}\\
\alpha & =\left(\mathbf{I}-\mathcal{X} \mathcal{X}^{T}\right)^{\dagger}\left(\mathcal{Y}-\mathcal{X} \mathcal{Y}^{T}\right) \mathbf{I} \\
\beta & =\mathcal{Y}^{T} \mathbf{1}-\mathcal{X}^{T} \alpha
\end{align*}
$$

$$
\mu \text { as }
$$

$$
\begin{equation*}
\xi(f)=\mu \Pi_{\mathcal{X}}\left(\frac{\partial J}{\partial \mathbf{D}(f)}\right) \tag{15}
\end{equation*}
$$

where \odot : element-wise product, \mathcal{Z}^{\dagger} : left-pseudo inverse.

$\mathbf{D}(f)$ is updated as
$\mathbf{D}(f) \leftarrow R(\mathcal{X}, \xi(f))=P(\mathcal{X} \odot \exp (\xi(f) \oslash \mathcal{X}))$
where retraction $R(\mathcal{X}, \xi(f))$ maps $\xi(f)$ to $\mathbb{D P}_{N}, \oslash$: element-wise division, $P(\bullet)$: projection onto $\mathbb{D P}_{N}$ obtained using the Sinkhorn-Knopp algorithm

4. Evaluation

Artificial impulse response $T_{60}=200-500 \mathrm{~ms}$

- 16-kHz sampling, 3072-point FFT (192 ms)
- $N(=2,3,4,5)$-source cases
- Eight combination of N utterances of males and female speakers
- 40-dB signal-to-noise ratio
- Use $L=100$ frames (9.6 s) and $\mu=1.0$
- Use result of Sawada's method as initial condition

$J(\bullet)$ along iteration

SDR improvement

(a) at $T_{60}=400 \mathrm{~ms}$ under various number of sources

(b) with $N=4$ under various $T_{60} \mathrm{~s}$

Processing-time in seconds

Method	2 ch	3 ch	4 ch	5 ch
SU-FDICA	19.8	35.7	33.7	39.3
+ Sawada	+0.1	+2.8	+5.3	+13.8
AuxIVA	3.6	6.0	8.5	12.1
ILRMA	23.2	41.4	57.5	76.2
SU -FDICA	19.8	35.7	33.7	39.3
+Sawada+Proposed	+70.6	+74.7	+78.3	+89.3

[1] S. Emura et al., A frequency-domain BSS method based on L1 norm, unitary constraint, and Cayley transform, ICASSP2020.
[2] A. Douik and B. Hassibi, Manifold optimization over the set of doubly stochastic matrices, IEEE Trans. Signal process., 2019.

