

CROSS-ATTENTION-GUIDED WAVENET FOR MEL SPECTROGRAM RECONSTRUCTION IN THE ICASSP 2024 AUDITORY EEG CHALLENGE

Yuan Fang , Hao Li, Xueliang Zhang, Fei Chen, Guanglai Gao

Inner Mongolia University, China Southern University of Science and Technology, China

Reporter: Yuan Fang

32209021@mail.imu.edu.cn

BACKGROUND

PROPOSED MODEL

> EXPERIMENT

> CONCLUSIONS

Fig.1 Task 2 of the Auditory EEG Challenge: EEG-to-MEL Spectrogram Reconstruction.

- ① The ICASSP 2024 Auditory EEG Challenge Task 2 is a regression task.
- ② Predicting the mel spectrogram based on the input EEG signal.
- ③ The model is evaluated using Pearson correlation.

1) Inter-individual differences.

2) Low signal-to-noise ratio.

3) EEG to speech is a challenging problem due to its nonlinear nature

BACKGROUND

PROPOSSED MODEL

> EXPERIMENTS

> CONCLUSIONS

PROPOSED MODEL

- 1 Cross-Attention-Guided WaveNet for Mel spectrogram reconstruction.
- ② The coarse-to-fine granularity strategy.
- ③ Cross-attention mechanism is used to fuse two different modalities.
- ④ A combined loss function is used to optimize multiple outputs.
- 5 The Mixup augmentation technique to mitigate overfitting and improve generalization performance.

Fig.2 Proposed model.

6

- 1 In the field of deep learning, multiobjective sequential learning has become a common strategy.
- 2 The coarse-to-fine granularity approach is used to estimate multiple objectives.
- ③ The effectiveness of this strategy was validated through experimental ablation studies.

7

- WaveNet effectively learns features from sequential data by utilizing dilated convolutions.
- ② WaveNet showed significant performance in the ICASSP 2023 Auditory EEG Challenge.

Fig.4 WaveNet Architecture

- Cross-Attention mechanism is a multi-head attention mechanism commonly used in deep learning-based methods as a modality fusion module.
- ② Cross-Attention mechanism captures dependencies between different scales of features and modalities, facilitating effective information exchange and fusion.

- multiple loss functions jointly to ensure stable training of the model.
- ② L1 norm
- ③ Negative Pearson correlation coefficient(NP)
- ④ Kullback-Leibler Divergence (KL divergence)

$$Loss = \alpha * L_1 + NP + KL$$

$$\begin{split} L_1 &= L_1(Env) + L_1(Mell0) + L_1(Mel80) + L_1(Mag) \\ NP &= NP(Env) + NP(Mell0) + NP(Mel80) + NP(Mag) \\ KL &= KL(Mell0) \end{split}$$

Considering the constraints of a limited dataset, the Mixup data augmentation technique was adopted to alleviate overfitting and improve performance:

$$x = \lambda x_i + (1 - \lambda) x_j$$
$$y = \lambda y_i + (1 - \lambda) y_j$$

In the Mixup data augmentation technique, x_i and x_j represent two segments of EEG from different participants, while y_i and y_j represent the corresponding audio signals. The parameter λ is randomly sampled from the range [0,1].

Fig.6 Mixup data augmentation.

BACKGROUND

PROPOSED MODEL

> EXPERIMENTS

> CONCLUSIONS

EXPERIMENTS – Dataset

• Auditory EEG corpus:

• Auditory EEG challenge

• Train set:

- Sub-01 to Sub-26
- Sub-43 to Sub-85
- Val set:
 - Sub-27 to Sub-42
- Test set:
 - Sub-86 to Sub-104

Subjects		Stimuli									
Sub-01 to sub-26	26	AB1	AB2	AB3	AB4	AB5_1	AB5_2	AB5_3	AB6_1	AB6_2	AB15
Sub-27 to sub-31	5	AB1	P1	P2	P3	AB7_1	AB7_2	P10	P4]	
Sub-32 to sub-36	5	AB1	P5	P6	P7	AB8	P_8	P10	AB16]	
Sub-37 to sub-42	6	AB1	P9	P10	P11	P12	AB9	AB17]		
Sub-43 to sub-46	4	AB1	P10	P13	P14	P15	AB10	AB18]		
Sub-47 to sub-48	2	AB1	P16	P17	P18	P19	AB11	AB19]		
Sub-49 to sub-56	8	AB1	P20	P21	P23	AB12_1	AB12_2	P22			
Sub-57 to sub-62	6	AB1	P24	P26	P27	AB13_1	AB13_2	P25]		
Sub-63 to sub-71	8	AB1	P28	P29	P30	AB14_1	AB14_2	P31]		
Sub-72 to sub-78	8	AB1	P32	P33	P34	AB14_1	AB14_2				
Sub-79 to sub-85	7	AB1	P35	P36	P37	AB14_1	AB14_2				
Sub-86 to sub-95	10	AB1	P38	P39	P40	AB20	AB21	AB22		Trai	n
Sub-96 to sub-104	10	AB1	P41	P42	P43	AB23	AB24	AB25		Test	

Fig.7 Dataset

Detailed test set scores. Each point in the boxplot represents the average for one subject

Fig.8 Task 2 of the Auditory EEG Challenge Results of Different Teams

- The proposed model achieved a PCC score of 0.0651, outperforming other baseline models.
- 2 The proposed model ranked second out of 48 teams in the Auditory EEG Challenge 2024 Task 2.

Model	PCC
VLAAI	0.0470
DPRNN	0.0554
Proposed	0.0651

Table 1 Comparative Analysis of Models on validation set

EXPERIMENTS – ablation experiment

Fig.9 Ablation-1

This ablation method solely utilizes the WaveNet module to reconstruct the Mel spectrogram.

EXPERIMENTS – Ablation experiment

EEG WaveNet DecodingBlock Deco

Fig.10 Ablation-2

This ablation method involves removing the last two decoding blocks. The purpose is to examine the influence of the coarse-to-fine granularity strategy.

EXPERIMENTS – Ablation experiment

This ablation method omits the mixed data augmentation technique. The purpose is to evaluate the impact of data augmentation operations on the model's performance.

- Each module of the model has made a significant contribution to the overall performance.
- ② The coarse-to-fine granularity strategy improved the performance by 0.002.
- ③ The decoding block and coarse-to-fine granularity strategy led to a 0.0071 improvement.
- ④ Mixup contributed an improvement effect of 0.0039.

Model	РСС			
Ablation-1	0.0580			
Ablation-2	0.0631			
Ablation-3	0.0612			
Proposed	0.0651			

Table 2 Ablation experiments results

BACKGROUND

- PROPOSED MODEL
- > EXPERIMENTS

CONCLUSIONS

Conclusions

- ✓ The proposed CAT-guided WaveNet model leverages CAT to bridge the gap between different modalities and utilizes WaveNet with a coarse-to-fine granularity to construct the Mel spectrogram.
- ✓ Compared to baseline, the proposed method demonstrates stronger performance and improved generalization ability on unseen data.
- \checkmark The code has been uploaded to GitHub.

https://github.com/IMU-FangYuan/Multi-Stage-Multi-Target-WaveNet-for-the-ICASSP-2024-Auditory-EEG-Challenge-2024

THANK YOU

Speech Signal Processing Group, Inner Mongolia University