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MOTIVATION
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UNDERWATER CHALLENGES
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EXISTING APPROACHES FOR UIE
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MAJOR OBSERVATION
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Methods

Despite significant advancements in the
enhancement of underwater images, current
approaches still suffers from visual artifacts,
such as color distortion, poor visibility, low
contrast, hazy, blurriness.
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PROPOSED MODEL
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QUANTITATIVE RESULTS

Table 1: UIQM comparison on U45 dataset. The first, second, and third best performances are represented in red, blue, and green respectively.
Method FE UDCP FGAN RB RED IBLA WSCT CycleGAN AGCycleGAN X-CAUNET
UIQM 2984 2339 3158 3.101 2979 2401 2.890 3.138 3.183 3.287

Table 2: Comparison with the state-of-the-art on three datasets across six different evaluation metrics.

Methods UIEB SUIM-E UIEB Challenge
PSNR SSIM MS-SSIM LPIPS UIQM (PSNR SSIM MS-SSIM LPIPS UIQM |BRISQUE UIQM
UDCP [11] 13.026 0.545 0.769 0283 1922 |12.074 0.513 0.742 0.270  1.648 |29.658 1.566
IBLA [2] 19.316 0.690  0.855 0233  2.108 |18.024 0.685  0.849 0.209 1.826 |24.972 2.142
CBF [1] 20.771 0.836  0.890 0.189 3318 |20.395 0.834 0.884 0.194 3.003 |29.213 2.810
UGAN [12] 23322 0.815  0.932 0.199  3.432 24704 0.826  0.941 0.190 2894  |25.118 2.662
FUnIE-GAN [13](21.043 0.785  0.890 0.173 3250 |23.590 0.825 00913 0.189 2918 |24.743 2.768
SGUIE-Net [4] [23.496 0.853  0.926 0.136  3.004 25987 0.857  0.945 0153 2.637 ]27.320 2.527
DWNet [5] 23.165 0.843  0.929 0.162  2.897 (24850 0.861 0.940 0.133 2,707 |31.160 2.269
X-CAUNET 24.121 0.871  0.939 0.135 3.132  |24.721 0.886  0.947 0.121  2.855 |23.980 2.712
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QUALITATIVE RESULTS

SSIM / PSNR
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QUALITATIVE ABLATION STUDY

Input CS1 CS2 CS3 CS4 CS5 CS6 FM

O CSI: Without global transformer

0 CS2: Green channel as common input to cross-attention branches

0 CS3: Red channel as common input to cross-attention branches

0 CS4: Passing R-G-B channels in a one-to-one manner through 3x3, 5x5, and 7x7 kernels respectively
O CS5: Without 5x5 and 7x7 CONYV blocks

O CS6: Without 7x7 CONYV block

O FM:  Full model
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QUANTITATIVE ABLATION STUDY
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INFLUENCE ON DOWNSTREAM TASKS
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UIE RESULTS OF X-CAUNET ON VIDEOS
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