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Introduction

Motivation:

✗ Implicitly learning prosodic information from audio
is often less than optimal due to the discretization
of audio signals during training of leading speech
models (e.g., HuBERT)

✗ Direct fine-tuning of existing speech models origi-
nally trained for ASR doesn’t perform well on SER.

✗ Direct use of transcripts at run-time can lead to
low performances due to transcription errors.

✗ Using both audio and linguistic information at run-
time requires a multimodal system which can in-
crease computational overhead.

Our contributions:

✓ We introduce EmoDistill, a novel cross-modal
Knowledge Distillation (KD) framework for learn-
ing unimodal representations from speech that
explicitly capture both the linguistic and prosodic
aspects of emotions.

✓ EmoDistill outperforms previous state-of-the-art
methods on IEMOCAP and achieves 77.49% UA
and 78.91% WA.

Experiment Details

Dataset:

• IEMOCAP benchmark

• 4 emotions (neutral, angry, sad, happy)

• 10-Fold cross-validation

• Subject-independent

Implementation:

• Prosodic Teacher: 4-layer ResNet2D trained on
eGeMAPs LLDs.

• Linguistic Teacher: BERT-base (pre-trained)

• AdamW, base LR of 1e-4

• 4 × NVIDIA A100 GPUs, Batch size = 128
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Fig. 1: EmoDistill Framework. Our student network is trained using a distillation of logit-level and embedding-level knowledge from frozen
linguistic and prosodic teacher networks, along with standard cross-entropy loss. During inference, we only use the student network in an
unimodal setup, avoiding computational overhead as well as transcription and prosodic feature extraction errors.

Logit-level KD. First, we transfer the logit-level knowledge using tradi-
tional KD with temperature-scaled labels [1]. Specifically, we minimize
the KL-Divergence LKL between the predicted logit distributions of
teacher and student models, where the objective becomes:

Llogits = LKL(yS||yL) + LKL(yS||yP ). (1)

Here, yS refers to the predictions of the student, while yL and yP
represent the predictions of Linguistic and Prosodic teacher models,
respectively. In all cases, the predicted logits y are obtained using
temperature parameter τ in the output softmax activation function. In
practice, we use different values of τ for KD from fLT and fPT . Let
zc be the output logits for class c, among a total of N classes. The
temperature-scaled logits yc are obtained as:

yc =
ezc/τ∑N
k=1 e

zc/τ
. (2)

Feature-level KD. Next, we use embedding-level KD to transfer
knowledge to the student model from the latent space of Lin-
guistic and Prosodic teacher models. Let zL and zP denote the
embeddings of Linguistic and Prosodic teachers, while z

′
L and

z
′
P denote the embeddings of the student model from linguistic

and prosodic projection layers respectively. We minimize the
negative cosine similarity Lcos among the teacher and student
embeddings as follows:

Lembeddings = Lcos(z
′
L, zL) + Lcos(z

′
P , zP ). (3)

Given two embeddings a and b, Lcos can be defined as:

Lcos(a, b) =
a

∥a∥2
· b

∥b∥2
, (4)

where ∥·∥2 represents ℓ2-norm.

Loss objective. LEmoDistill = αLlogits + βLembeddings + γLCE
(5)

Performance Evaluation

Tab. 1: SER results on IEMOCAP. Bold denotes the best results while underline denotes
the second-best.

Method Inf. Backbone Modality WA UA

Sun et al. (2021) CNN+LSTM Multimodal 61.2 56.01
Heusser et al. (2019) BiLSTM+XLNet Multimodal 71.40 68.60
Triantafyllopoulos et al. (2023) MFCNN+BERT Multimodal - 72.60
Ho et al. (2020) RNN+BERT Multimodal 73.23 74.33

Aftab et al. (2022) FCNN Unimodal 70.23 70.76
Liu et al. (2020) TFCNN+DenseCap+ELM Unimodal 70.34 70.78
Cao et al. (2021) LSTM+Attention Unimodal 70.50 72.50
Lu et al. (2020) RNN-T Unimodal 71.72 72.56
Wu et al. (2021) CNN-GRU+SeqCap Unimodal 72.73 59.71
Zou et al. (2022) Wav2Vec2+CNN+LSTM Unimodal 71.64 72.70
Ye et al. (2023) TIM-Net Unimodal 72.50 71.65

Ours HuBERT-base Unimodal 75.16 76.12
Ours HuBERT-large Unimodal 77.49 78.91
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Fig. 2: Left: We remove fL
T and vary τP . Right: We remove fP

T and vary τL.

Variants WA UA

Ours 75.16 76.12
w/o Llogits 73.94 (↓ 1.22) 74.02 (↓ 2.10)

w/o Lembedding 73.88 (↓ 1.28) 74.01 (↓ 2.11)

w/o fPT 74.09 (↓ 1.07) 72.82 (↓ 3.30)

w/o fLT 66.01 (↓ 9.15) 67.27 (↓ 8.85)

w/o fPT and fLT 69.92 (↓ 5.24) 70.17 (↓ 5.95)

w/o fS and fLT 49.42 (↓ 25.74) 50.08 (↓ 26.04)

w/o fS and fPT 71.09 (↓ 4.07) 71.83 (↓ 4.29)

✓ Linguistic understanding is crucial for SER.

✓ Prosodic understanding is complimentary,
but leads to a boost in SER performance.

✓ Hard logits are better for KD from the
prosodic teacher, as it is a weak teacher.

✓ Soft logits are better for KD from the linguistic
teacher, as it is a strong teacher.

✓ Using Logit and Embedding-level KD to-
gether improves performance.


