Scan for more!

SPEECH EMOTION RECOGNITION WITH DISTILLED PROSODIC AND LINGUISTIC AFFECT REPRESENTATIONS

Debaditya Shome, Ali Etemad

Queen's University, Canada

- low performances due to transcription errors.
- X Using both audio and linguistic information at runtime requires a multimodal system which can increase computational overhead.

Our contributions:

- ✓ We introduce EmoDistill, a novel cross-modal Knowledge Distillation (KD) framework for learning unimodal representations from speech that explicitly capture both the linguistic and prosodic aspects of emotions.
- EmoDistill outperforms previous state-of-the-art methods on IEMOCAP and achieves 77.49% UA and 78.91% WA.

Experiment Details

Dataset:

- IEMOCAP benchmark
- 4 emotions (neutral, angry, sad, happy)
- 10-Fold cross-validation
- Subject-independent

Fig. 1: EmoDistill Framework. Our student network is trained using a distillation of logit-level and embedding-level knowledge from frozen linguistic and prosodic teacher networks, along with standard cross-entropy loss. During inference, we only use the student network in an unimodal setup, avoiding computational overhead as well as transcription and prosodic feature extraction errors.

Logit-level KD. First, we transfer the logit-level knowledge using traditional KD with temperature-scaled labels [1]. Specifically, we minimize the KL-Divergence L_{KL} between the predicted logit distributions of teacher and student models, where the objective becomes:

$$\mathcal{L}_{\textit{logits}} = \mathcal{L}_{\textit{KL}}(y_S || y_L) + \mathcal{L}_{\textit{KL}}(y_S || y_P). \tag{1}$$

Here, y_S refers to the predictions of the student, while y_L and y_P represent the predictions of Linguistic and Prosodic teacher models, respectively. In all cases, the predicted logits y are obtained using

Feature-level KD. Next, we use embedding-level KD to transfer knowledge to the student model from the latent space of Linguistic and Prosodic teacher models. Let z_L and z_P denote the \dot{z}_L embeddings of Linguistic and Prosodic teachers, while z'_L and $z_{P}^{'}$ denote the embeddings of the student model from linguistic and prosodic projection layers respectively. We minimize the negative cosine similarity L_{cos} among the teacher and student embeddings as follows:

$$\mathcal{L}_{embeddings} = \mathcal{L}_{cos}(z'_L, z_L) + \mathcal{L}_{cos}(z'_P, z_P). \tag{3}$$

Given two embeddings a and b, L_{cos} can be defined as:

Implementation:

- Prosodic Teacher: 4-layer ResNet2D trained on eGeMAPs LLDs.
- Linguistic Teacher: BERT-base (pre-trained)
- AdamW, base LR of 1e-4
- 4 \times NVIDIA A100 GPUs, Batch size = 128

temperature parameter τ in the output softmax activation function. In practice, we use different values of τ for KD from f_T^L and f_T^P . Let z_c be the output logits for class c, among a total of N classes. The temperature-scaled logits y_c are obtained as:

$$y_c = \frac{e^{z_c/\tau}}{\sum_{k=1}^{N} e^{z_c/\tau}}.$$

$$\mathcal{L}_{cos}(a,b) = \frac{a}{\|a\|_2} \cdot \frac{b}{\|b\|_2},\tag{4}$$

where $\|\cdot\|_2$ represents ℓ_2 -norm.

(2) Loss objective.
$$\mathcal{L}_{EmoDistill} = \alpha \mathcal{L}_{logits} + \beta \mathcal{L}_{embeddings} + \gamma \mathcal{L}_{CE}$$
 (5)

Performance Evaluation

Ablation study

Tab. 1: SER results on IEMOCAP. **Bold** denotes the best results while underline denotes the second-best.

Method	Inf. Backbone	Modality	WA	UA
Sun <i>et al.</i> (2021)	CNN+LSTM	Multimodal	61.2	56.01
Heusser <i>et al.</i> (2019)	BiLSTM+XLNet	Multimodal	71.40	68.60
Triantafyllopoulos et al. (2023)	MFCNN+BERT	Multimodal	-	72.60
Ho et al. (2020)	RNN+BERT	Multimodal	73.23	74.33
Aftab <i>et al.</i> (2022)	FCNN	Unimodal	70.23	70.76
Liu <i>et al.</i> (2020)	TFCNN+DenseCap+ELM	Unimodal	70.34	70.78
Cao <i>et al.</i> (2021)	LSTM+Attention	Unimodal	70.50	72.50
Lu <i>et al.</i> (2020)	RNN-T	Unimodal	71.72	72.56
Wu <i>et al.</i> (2021)	CNN-GRU+SeqCap	Unimodal	72.73	59.71
Zou <i>et al.</i> (2022)	Wav2Vec2+CNN+LSTM	Unimodal	71.64	72.70
Ye <i>et al.</i> (2023)	TIM-Net	Unimodal	72.50	71.65
Ours	HuBERT-base	Unimodal	75.16	76.12
Ours	HuBERT-large	Unimodal	77.49	78.91

Acknowledgement

This work was supported by Mitacs, Vector Institute, and Ingenuity Labs Research Institute.

Variants	WA	UA	
Ours	75.16	76.12	
w/o \mathcal{L}_{logits}	73.94 (↓ 1.22)	74.02 (↓ 2.10)	
w/o $\mathcal{L}_{embedding}$	73.88 (↓ 1.28)	74.01 (↓ 2.11)	
w/o f_T^P	74.09 (↓ 1.07)	72.82 (↓ 3.30)	
w/o f_T^L	66.01 (↓ 9.15)	67.27 (↓ 8.85)	
w/o f_T^P and f_T^L	69.92 (↓ 5.24)	70.17 (↓ 5.95)	
w/o f_S and $f_T^{ar L}$	49.42 (↓ 25.74)	50.08 (↓ 26.04)	
w/o f_S and $ar{f_T^P}$	71.09 (↓ 4.07)	71.83 (↓ 4.29)	

 τ_L

Fig. 2: Left: We remove f_T^L and vary τ_P . Right: We remove f_T^P and vary τ_L .

/	Linguistic	understanding	is	crucial	for	SER
---	------------	---------------	----	---------	-----	-----

- Prosodic understanding is complimentary, but leads to a boost in SER performance.
- ✓ Hard logits are better for KD from the prosodic teacher, as it is a weak teacher.
- ✓ Soft logits are better for KD from the linguistic teacher, as it is a strong teacher.
- ✓ Using Logit and Embedding-level KD together improves performance.