Search for gravitational wave probes－ A self－supervised learning for pulsars based on signal contexts


```
    Mingmin Chi 1,3, Pei Wang4, Zhongyi Sun5, Yabiao Wang}\mp@subsup{}{}{5
    1.School of computer science, Fudan University
    2.Zhejiang Lab
3.Zhongshan PoolNet Technology Co., Ltd, Zhongshan Fudan Joint Innovation
                        Center
    4.National Astronomical Observatories, Chinese Academy of Sciences
    5.Tencent Youtu Lab

\section*{Contents}

\section*{Background}

\section*{Training Pipeline}

Results

Pulsars，the heartbeat of the universe

\section*{Background} Fudan University

\section*{1．Five－hundred－meter Aperture Spherical radio Telescope（FAST）}
－All radiation energy received by radio telescopes from the universe over the past 70 years cannot be flipped a page．
－Detect Gravitational Waves at nanohertz used Pulsar Timing Array succeed 2023. （Xu et al 2023 Res．Astron．Astrophys． 23075024 DOI： 10．1088／1674－4527／acdfa5）
Different from the ground－based laser detection method （LIGO and Virgo，2015）


Fig 2．nHz GW provided by PTA with FAST．
Fig 1．FAST，Arecibo，Effelesberg and Parkes telescopes．

\section*{Background} Fudan University

\section*{2．The motivations of searching pulsars}

1，Need More pulsars as GWs probes to become pulsar timing array．
2，Meaningful for astrophysics science，application of AI for science． Pulsar studies won Nobel prizes in Physics twice．

3，Challenges of deep learning：small example study，self－supervised learning，big data processing．

A systematic scientific engineering for 8 years． Our team has proposed a series of improvements for pulsar searching．


Fig 5．Telescope Array can become a larger telescope by VLBI network（the technology won Nobel Prize）． Pulsar Timing Array is a detected network in the universe．


Fig 3．pulsar and its pulse signal


Fig 4．Classical pulsar profile and image

\section*{Background} Fudan University

\section*{3．Pulsar searching}

Two main strategies：
1，Period search（left）：folding period signal to strength weak signals；
need longer observation．
2，Single pulse search（right）：depending on a small number of stronger signals；
 need higher sensitive observation．
Low frequency pulsars are seriously disturbed by temporal noise，which is unfavourable to the searching．Propose a new method combine two strategies．


Period search


Single pulse search

\section*{Tasks and Dataset} Fudan University

\section*{Two training Tasks：}

PPTA Profile Prediction Auxiliary Task
NACL Negative Augmentation Contrastive Learning

Dataset：CRAFTS－drift scan dataset，which contains
1，835 training samples including 837 pulsar signals and 998 noise signals， 13，647 test samples including 326 pulsar signals and 13，321 noise signals．


Notice：（1）unlabeled（2）unbalanced（3）baseline model（PICS－ResNet） training by labeled and balanced samples comes from other telescope．
\begin{tabular}{c|c|c|c|c|c}
\hline \hline \multicolumn{3}{c|}{ Train } & \multicolumn{3}{c}{ Test } \\
\hline Pos． & Neg． & Total & Pos． & Neg． & Total \\
\hline 837 & 998 & 1835 & 326 & 13321 & 13647 \\
\hline \hline
\end{tabular}

Li et al． 2018 IEEE MW

\section*{}

Commensal Radio Astronomy FasT survey （CRAFTS）data sets

2 DiU®：Pei Wang：Lei lian：Mako Kroc：Alex Dunning；Peng Jiang：Youling Yue：
Cheniin Jin ：Yan Zuu：Zhichen Pan：Rendong Nan

\section*{Training Pipeline}


Profile Prediction Auxiliary Task Train Proces

Negative Augmentation Contrastive Learning Train Process


Low－dimensional Feature Vectors of The Signals \(\pi \gg\)

Normalized Feature Vectors

Data Augmentation Process

Feature Extractor（ResNet18 in Our Method）Fully Connected Layer

ReLU Activation Function

Sigmoid Activation Function

Transfer Direction of Model Parameters

\section*{Training Pipeline} Fudan University


Fig 7．PPAT Blue lines represent the profile ground truth，while the red lines represent the prediction．


Fig 9．Visualization Grad－CAM of ResNet18 third layer in downstream pulsar detection task．


Negative augmentation

Original

Positive augmentation

Fig 8．NACL Negative augmentation contrastive learning increases discrimination．

\section*{Results} Fudan University

\section*{The results of experiments}

Both self-supervised tasks PPAT and NACL can improve the baseline method, which can be observed in the improvement of recall, AUC and the decrease of FPR.
\begin{tabular}{c|c|l|l|l} 
Method & \multicolumn{1}{|c|}{ Signals } & Recall & \multicolumn{1}{|c}{ FPR } & \multicolumn{1}{c}{ AUC } \\
\hline PICS[12] & All folded signals & 0.9587 & 0.2039 & 0.9050 \\
PICS-ResNet[13] & All folded signals & 0.9610 & 0.1606 & 0.9133 \\
SA-ResNet[14] & subbands+subints+DM & 0.9863 & 0.0283 & 0.9734 \\
\hline baseline & subband+subint & 0.9808 & 0.0892 & 0.9316 \\
\hline only PPAT (ours) & subband+subint & 0.9818 & 0.0353 & 0.9678 \\
only NACL (ours) & subband+subint & 0.9826 & 0.0265 & 0.9729 \\
both (ours) & subband+subint & \(\mathbf{0 . 9 8 7 8} \uparrow\) & \(\mathbf{0 . 0 2 1 1} \downarrow\) & \(\mathbf{0 . 9 8 0 3} \uparrow\) \\
\hline \hline
\end{tabular}

\section*{Results} Fudan University

The results of
\begin{tabular}{c|c|c|c|c} 
Method & Signals & Recall & FPR & AUC \\
\hline PICS［12］ & All folded signals & 0.9587 & 0.2039 & 0.9050 \\
PICS－ResNet［13］ & All folded signals & 0.9610 & 0.1606 & 0.9133 \\
SA－ResNet［14］ & subbands＋subints＋DM & 0.9863 & 0.0283 & 0.9734 \\
\hline baseline & subband＋subint & 0.9808 & 0.0892 & 0.9316 \\
\hline only PPAT（ours） & subband＋subint & 0.9818 & 0.0353 & 0.9678 \\
only NACL（ours） & subband＋subint & 0.9826 & 0.0265 & 0.9729 \\
both（ours） & subband＋subint & \(\mathbf{0 . 9 8 7 8} \uparrow\) & \(\mathbf{0 . 0 2 1 1} \downarrow\) & \(\mathbf{0 . 9 8 0 3} \uparrow\) \\
\hline \hline
\end{tabular}

One More Thing：if pretrain PPAT first，it will be better．
\begin{tabular}{c|c|c} 
Order & Recall & FPR \\
\hline PPAT＋NACL & \(\mathbf{0 . 9 8 7 8}\) & \(\mathbf{0 . 0 2 1 1}\) \\
NACL＋PPAT & 0.9820 & 0.0294 \\
\hline
\end{tabular}

\section*{Results}

We find \(\mathbf{3 2}\) new pulsars and \(\mathbf{2}\) more Fast Radio Bursts


Fig 10．The sky map of the new pulsars find by our team．

\section*{Pulsars，the heartbeat of the universe} Fudan University

The voices of pulsars detected by FAST．


Wang et al．Listen the Universe：Sonification Recipes of Pulsars Base on Artifficial Intelligence（in prep．）

\section*{}
```

