

ICASSP 2024 IEEE International Conference on Acoustics, Speech and Signal Processing 14~19 April 2024 | Seoul, Korea

TD-GPT: TARGET PROTEIN-SPECIFIC DRUG MOLECULE GENERATION GPT

Zheng-da HE^{1,2}, Linjie Chen²,

Jiaying Xu², Hao Lv², Rui-ning Zhou², Jianhua Hu², Yadong Chen², Yang Gao¹

1 State Key Laboratory for Novel Software Technology, Nanjing University

2 Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University

2. METHOD

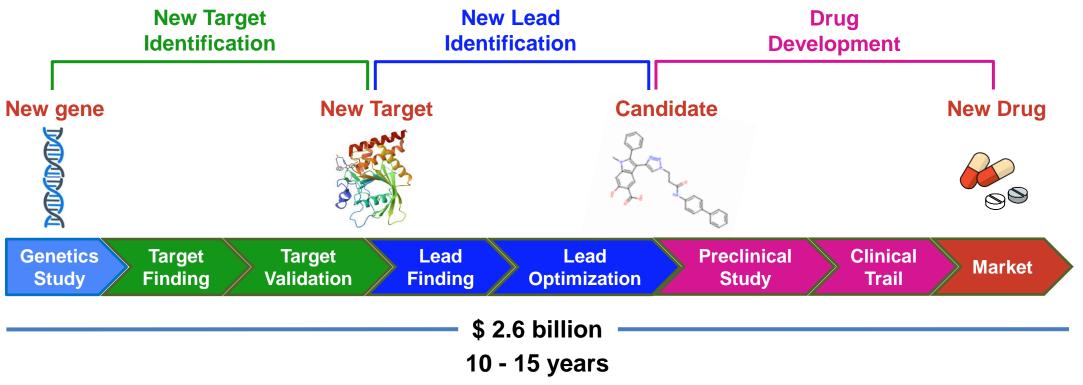
- 2.1 Model Architecture : Two Models and Four-stage Workflow
- 2.2 Linear Transformer-based DTA Pre-training Model (LT-DTA)
- 2.3 TD-GPT Targeted Molecular Generation Model

3. EXPERIMENTS

4. RESULTS

5. SUMMARY

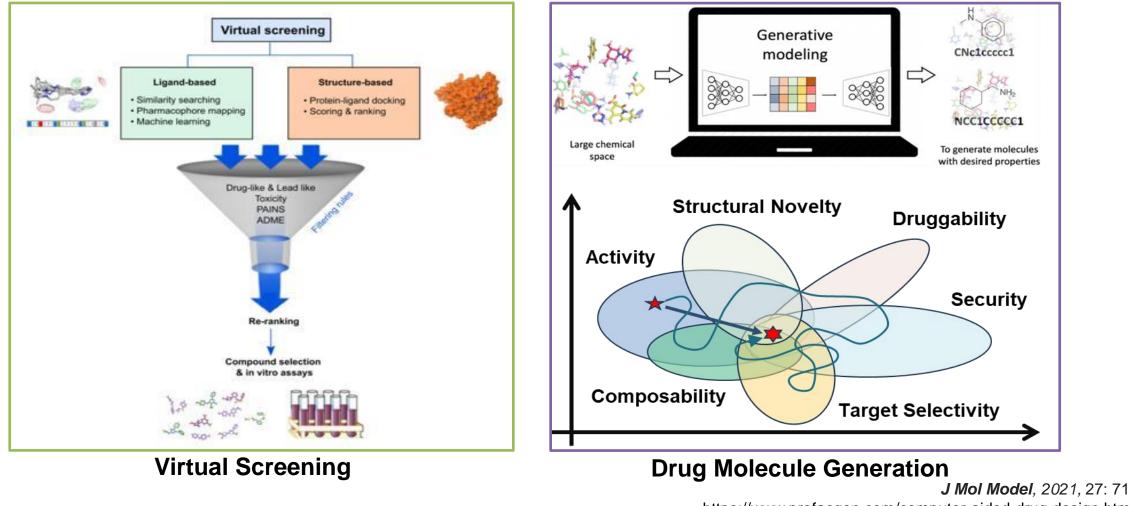
The Drug Development Process



- □ High costs, High risks, Long cycles, and Low success rates
- □ Lack of reliable key technologies for discovering lead structures

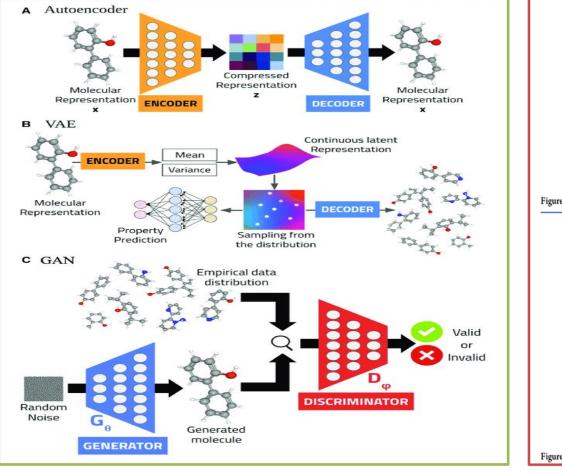
Journal of Health Economics, 2016, 47, 20-33. Future Medicinal Chemistry, 2020, 12, 939-947

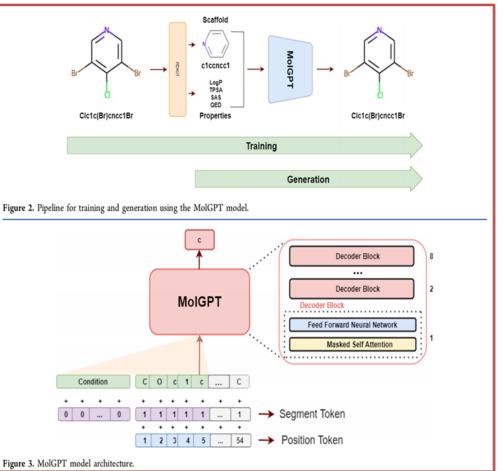
Computational Intelligence in the Discovery of Lead



https://www.profacgen.com/computer-aided-drug-design.htm

Current Deep Learning Techniques for Molecular Generation

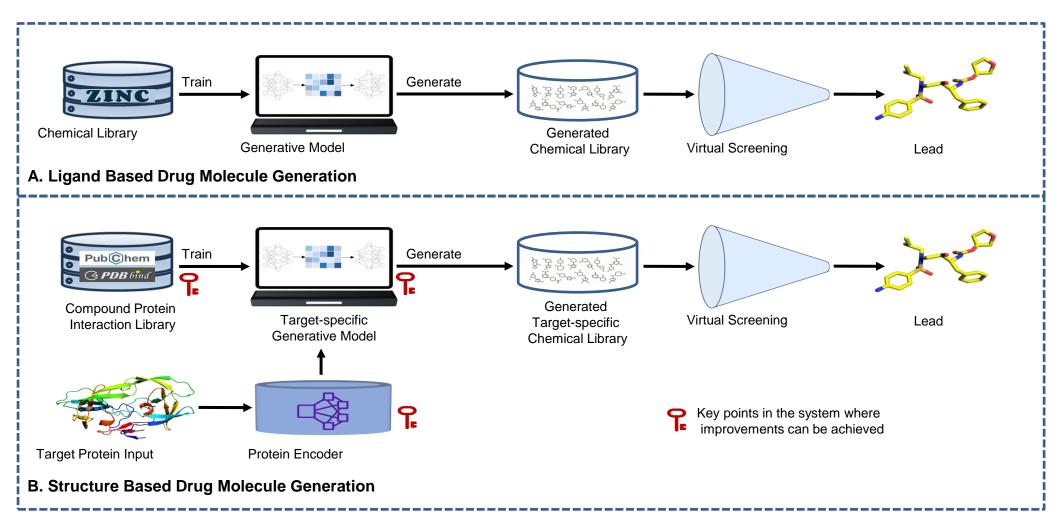




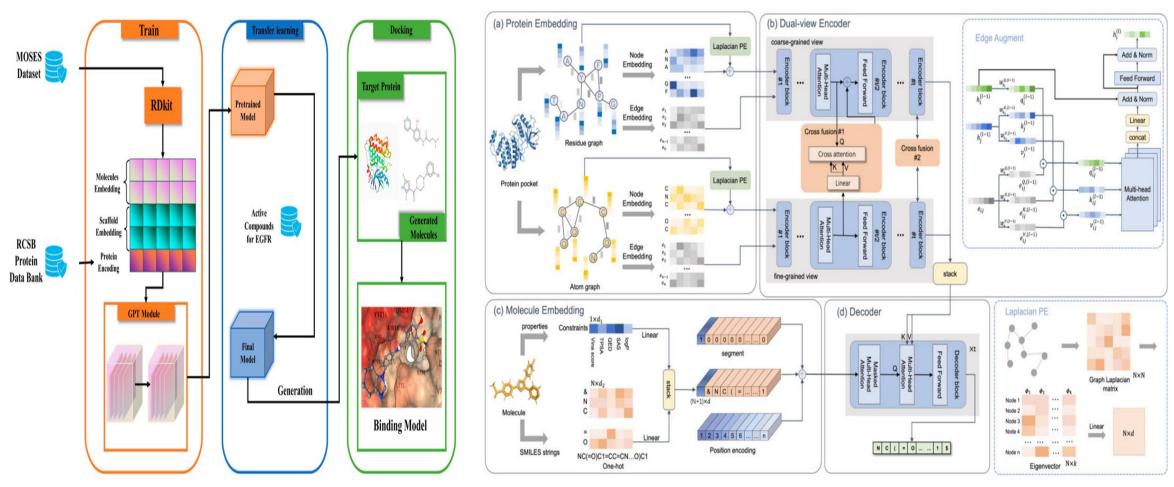
Frontiers in Materials, 2022.

J. Chem. Inf. Model. 2022, 62, 2064–2076

Ligand Based and Structure Based Drug Molecule Generation



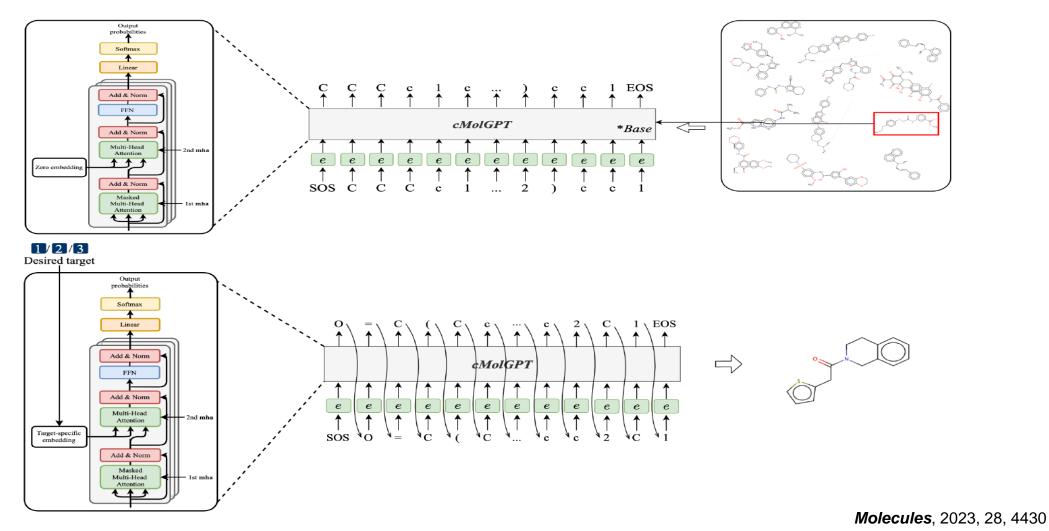
• Related Works – PETrans, CProMG



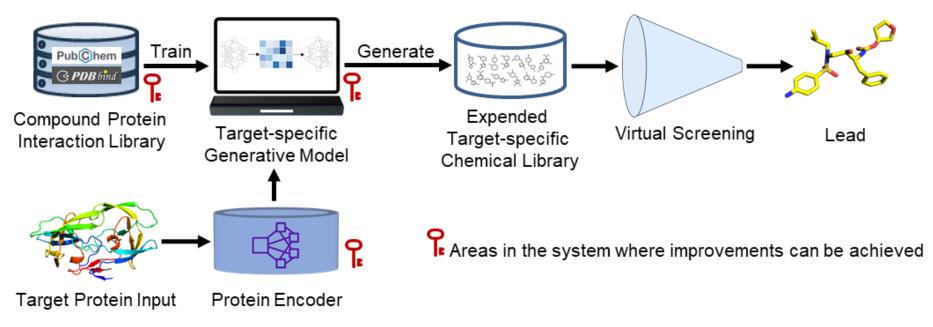
Int. J. Mol. Sci. 2023, 24, 1146

Bioinformatics, 2023, 39, i326-i336

Related Works - cMolGPT



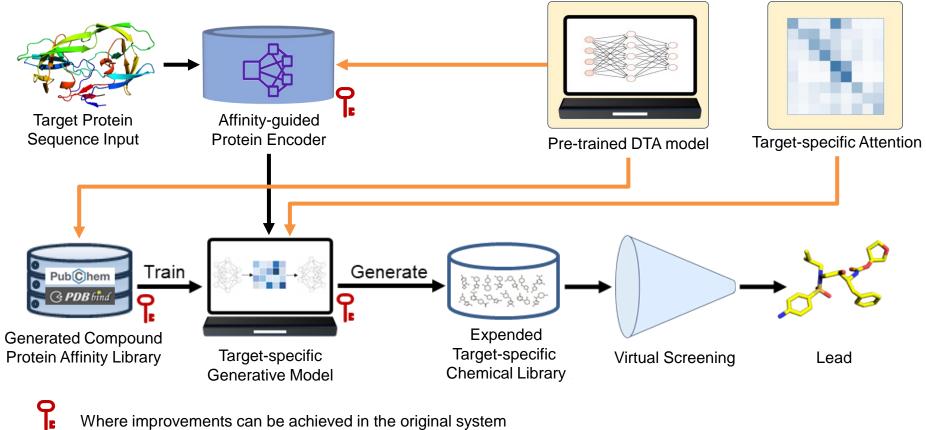
Challenges



Three key points in the structure-based molecular generation model workflow correspond to three key challenges:

- The protein-ligand binding database
- The type of target protein information
- The generative model architecture design

Solutions



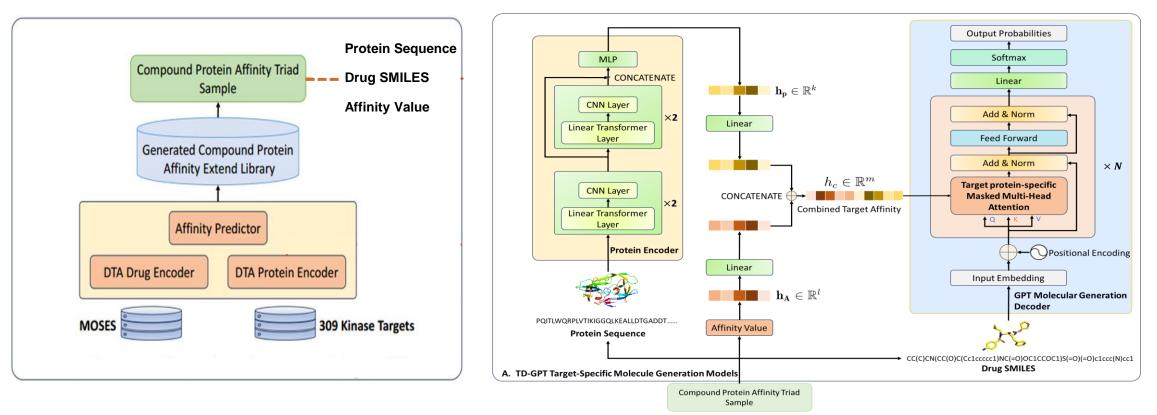
Where improvements can be achieved in the original system

Key modules added to the system

Key improvements to the original system

• 2.1 Two Models and a Four-stage Workflow

Two Models



1. LT-DTA drug-target affinity prediction model

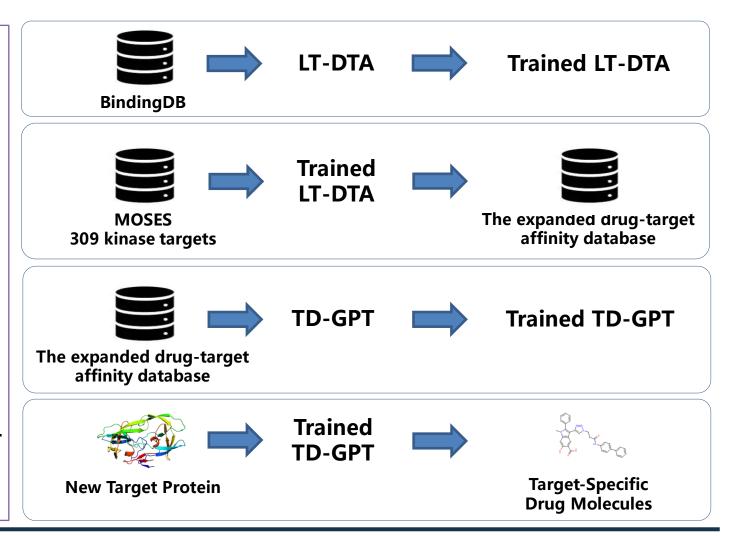
2. TD-GPT Targeted Molecular Generation Model

• 2.1 Two Models and a Four-stage Workflow

Four-stage workflow

- Training LT-DTA
 on BindingBD for affinity prediction;
- Using LT-DTA to expand the drug-target affinity database for TD-GPT training;
- **Training TD-GPT** on the expanded database;
- Using TD-GPT

to generate target-specific molecules.



• 2.2 The LT-DTA Drug-Target Affinity Prediction Model

The Linear Transformer and its Computational Flow Diagram



• 2.2 The LT-DTA Drug-Target Affinity Prediction Model

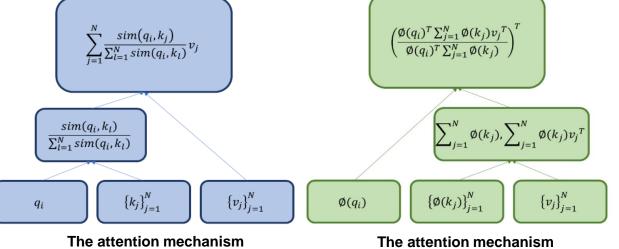
The Linear Transformer and its Computational Flow Diagram

The Vanilla Transformer employs a similarity function for query and key defined as

$$\operatorname{sim}(q_i, k_j) = e^{\frac{q_i^T k_j}{\sqrt{d}}} \qquad V_i' = \frac{\sum_{j=1}^N \operatorname{sim}(Q_i, K_j) V_j}{\sum_{j=1}^N \operatorname{sim}(Q_i, K_j)}$$

the Linear Transformer uses a kernel function $k(x, y): \mathbb{R}^{2 \times F} \to \mathbb{R}_+$ to define similarity

$$sim(\boldsymbol{q}_i, \boldsymbol{k}_j) = \phi(\boldsymbol{q}_i)^{\mathsf{T}} \varphi(\boldsymbol{k}_j)$$
$$\phi(x) = \varphi(x) = elu(x) + 1$$



The attention mechanism of Transformer

The attention mechanism of Linear Transformer

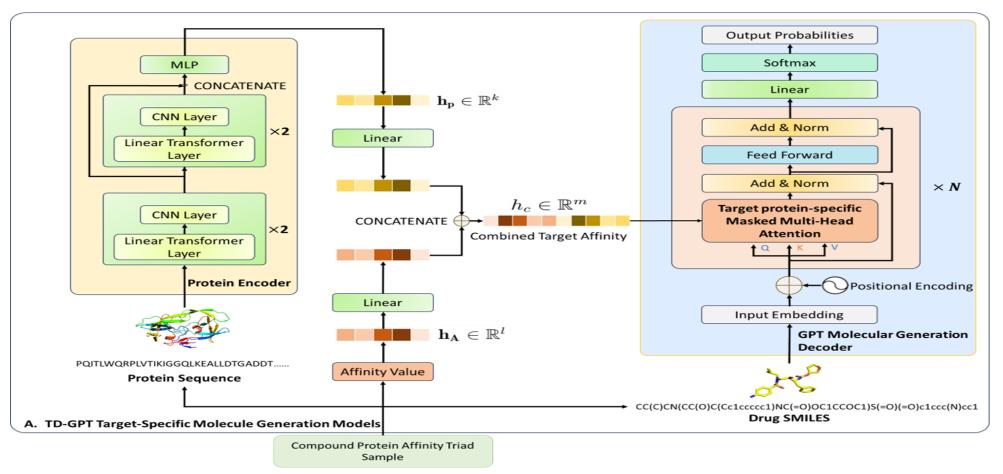
By leveraging the associative property of matrix multiplication

Attention
$$(\boldsymbol{Q}, \boldsymbol{K}, \boldsymbol{V})_i = \frac{\sum_{j=1}^N \phi(Q_i)^T \phi(K_j) V_j}{\sum_{j=1}^N \phi(Q_i)^T \phi(K_j)} = \frac{\phi(Q_i)^T \sum_{j=1}^N \phi(K_j) V_j}{\phi(Q_i)^T \sum_{j=1}^N \phi(K_j)}$$

The Linear Transformer reduces the computational complexity to O(N).

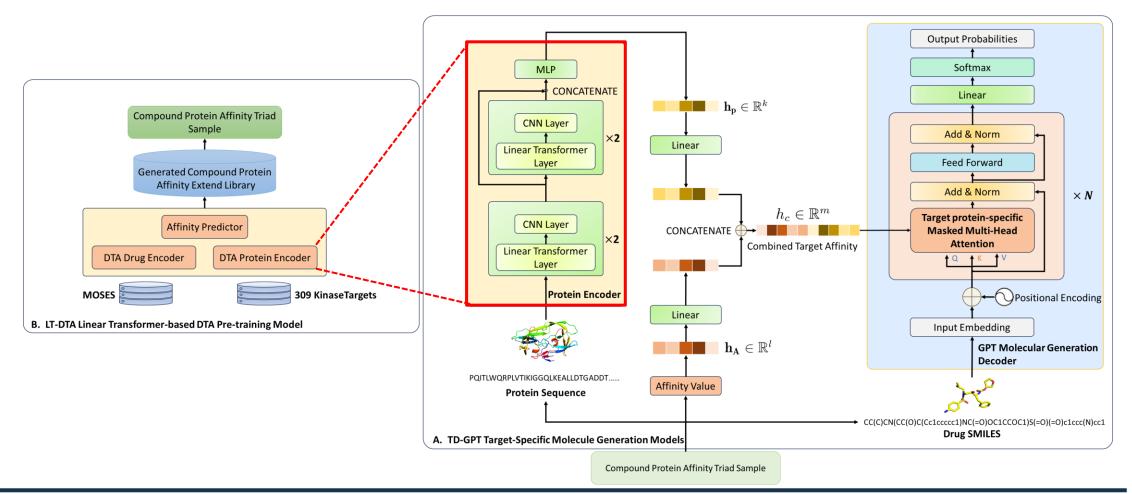
• 2.3 TD-GPT Targeted Molecular Generation Model

The Molecular GPT Model



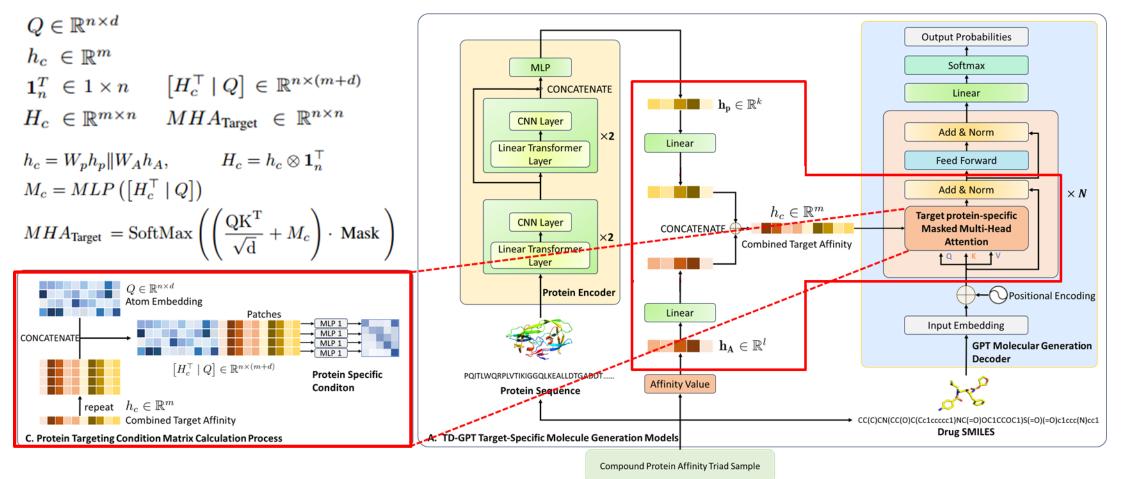
• 2.3 TD-GPT Targeted Molecular Generation Model

The Affinity-Enhanced Protein Feature Encoder



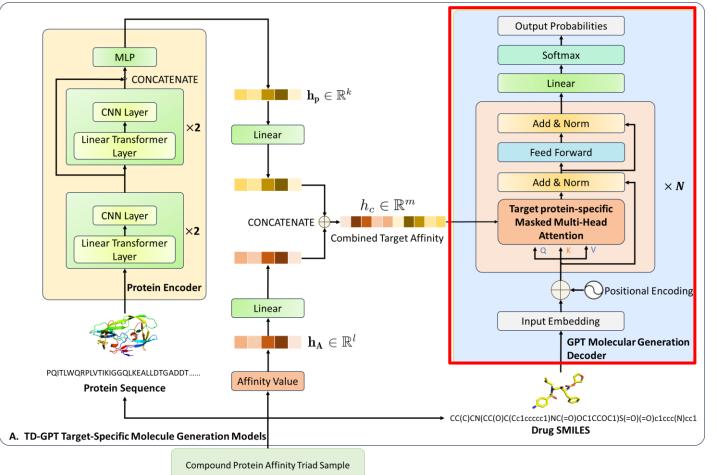
• 2.3 TD-GPT Targeted Molecular Generation Model

Target Protein-Specific Attention Module



• 2.3 TD-GPT Targeted Molecular Generation Model

GPT Molecular Generation Decoder



input

$$s = \{s_1, s_2, \dots, s_N\}$$

• GPT Transformer

$$h^{(0)} = sW_e + W_p$$

$$\bar{h}^{(l)} = \text{LN}\left(h^{(l-1)} + \text{MHA}_{\text{Target}}\left(h^{(l-1)}, h_c\right)\right)$$

$$h^{(l)} = \text{LN}\left(\bar{h}^{(l)} + \text{FFN}\left(\bar{h}^{(l)}\right)\right)$$

• probability detector

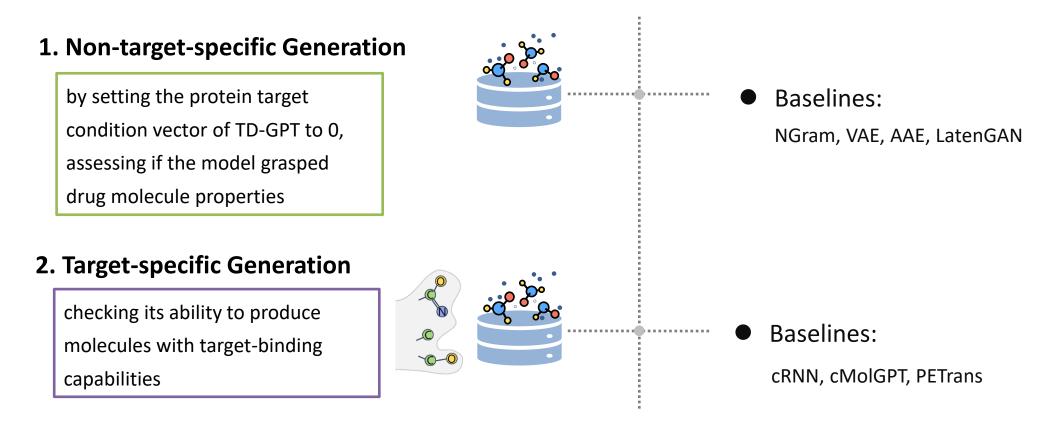
$$P(s_{i+1} \mid s_1, \dots, s_i) = \operatorname{softmax}\left(h_i^{(n)} W_o\right)$$

• log-likelihood (NLL) loss of the decoded SMILES string

$$NLL(S \mid c) = -\left[\ln P(s_1 \mid c) + \sum_{i=2}^{N} \ln P(s_i \mid s_{1:i-1}, c)\right]$$

3 EXPERIMENTS

• Experimental Design and Baselines



Measures

• Measures related to model generation efficiency include:

- Validity: Molecules that adhere to basic chemical rules
- Uniqueness: The proportion of unique molecules
- Novelty: Molecules not in the training set
- SNN: Shortest Novelty-Normalized

• Measures related to the drug-likeness of generated molecules include:

- QED: Quantitative Estimate of Druglikeness
- SA: Synthetic Accessibility Score
- > Activity

3 EXPERIMENTS

Datasets

• BindingDB dataset

309 human kinase targets and 95,921 molecules, totaling 182,311 affinity data entries

MOSES dataset

consists of 1.9 million lead-like molecules from the ZINC dataset with a molecular weight of 250–350 Da

• Extended (drug, target, affinity) triplet database

used the LD-DTA model to predict drug-target affinity on the MOSES dataset for the 309 kinase targets, forming an extended (drug, target, affinity) triplet database, which served as the training dataset for the TD-GPT targeted molecular generation model.

Non-target-specific Molecular Generation

 Table 1.
 Comparison of TD-GPT with Non-target-specific Generation Models. Bold font indicates the best.

Models	Valid	Unique @ 1k	Unique @ 10k	Novelty	SNN	Measures Product
HMM	0.076	0.623	0.567	-	0.388	-
NGram	0.238	0.974	0.922	-	0.521	-
VAE	0.977	1	0.998	0.695	0.608	0.412
AAE	0.937	1	0.997	0.695	0.626	0.406
LatentGAN	0.897	1	0.997	0.949	0.538	0.457
TD-GPT (Ours)	0.993	1	0.994	0.781	0.619	0.477

Target-specific Molecular Generation

Table 2. Comparison of TD-GPT with Other Models for Target-specific Generation. Bold font indicates the best.

Target	Model	Valid	Unique @10k	Novelty	QED	SA
EGFR	cRNN	0.921	0.861	0.662	-	-
	cMolGPT	0.885	0.940	0.898	-	-
	PETrans	0.895	0.719	1	0.452	2.736
	TD-GPT (Ours)	0.934	0.978	0.962	0.742	2.672
HTR1A	cRNN	0.922	0.844	0.498	-	-
	cMolGPT	0.905	0.896	0.787	-	-
	PETrans	0.905	0.624	1	0.529	2.971
	TD-GPT (Ours)	0.952	0.979	0.926	0.755	2.657
S1PR1	cRNN	0.926	0.861	0.514	-	-
	cMolGPT	0.926	0.838	0.684	-	-
	PETrans	0.815	0.420	1	0.459	2.559
	TD-GPT (Ours)	0.995	0.980	0.931	0.751	2.666

• Target-specificity Experiment of TD-GPT

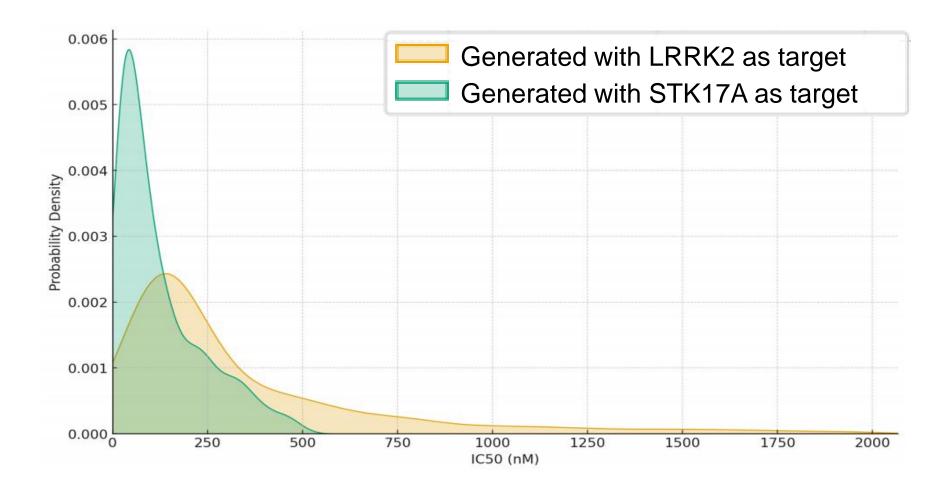


Fig. 2. Activity Distribution for Target STK17A / LRRK2 of Molecules Generated with Different Targets

Affinity(Activity) Controllability of TD-GPT

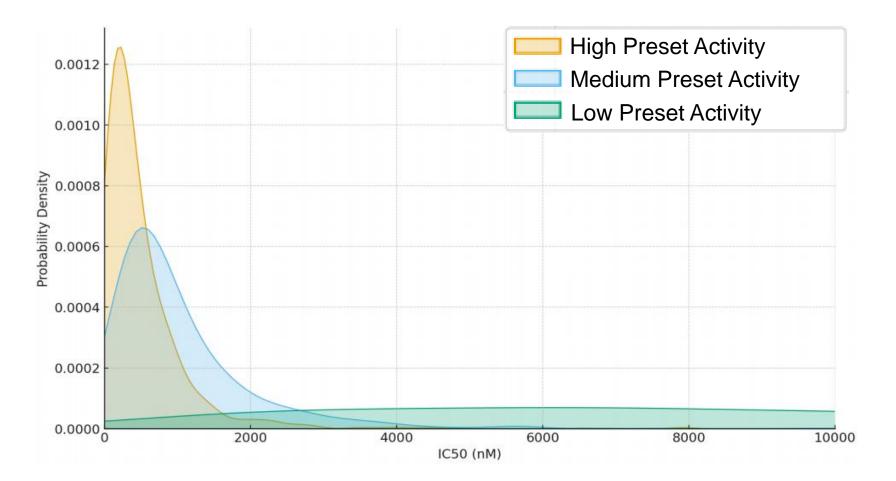
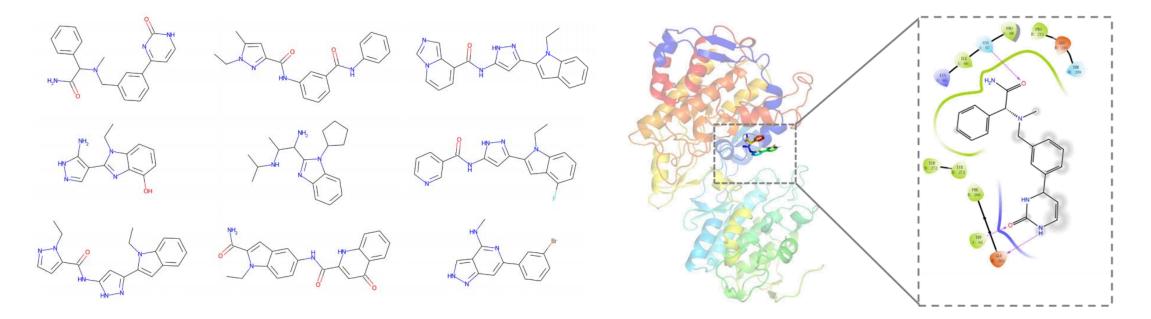


Fig. 3. Activity Distribution of Molecules Generated for LRRK2 under Different Preset Affinity Conditions.

4 RESULTS

Example of Generating Target-Specific Candidate Drug Molecules



- **Fig. 4**. High-affinity (active) candidate drug molecules generated using the TD-GPT Framework.
- **Fig. 5**. Representative candidate drug molecule docking results with the PDZ-binding kinase target.

- 1. TD-GPT, a novel deep learning framework for targeted drug molecule generation, integrates LT-DTA for affinity prediction and database expansion,
- 2. and a target-specific attention module for optimized molecule generation,
- 3. demonstrating superior performance in generating high-affinity, target-specific molecules.

THANKS!