

Diffusion-based speech enhancement in matched and mismatched conditions using a Heun-based sampler

P. Gonzalez¹ Z.-H. Tan² J. Østergaard² J. Jensen² T. S. Alstrøm³ T. May¹

¹Department of Health Technology Technical University of Denmark

²Department of Electronic Systems Aalborg University

³Department of Applied Mathematics and Computer Science Technical University of Denmark

April 16th, 2024

- Diffusion models are a new class of generative models that have recently been applied to speech enhancement¹²
- They iteratively add noise to the training data and learn to undo this process

¹Y.-J. Lu et al., "Conditional diffusion probabilistic model for speech enhancement," ICASSP, 2022

- Diffusion models are a new class of generative models that have recently been applied to speech enhancement¹²
- They iteratively add noise to the training data and learn to undo this process

Forward process $d\boldsymbol{x}_t = \boldsymbol{f}(t, \boldsymbol{x}_t) dt + g(t) d\boldsymbol{\omega}_t \longrightarrow$

¹Y.-J. Lu et al., "Conditional diffusion probabilistic model for speech enhancement," ICASSP, 2022

- Diffusion models are a new class of generative models that have recently been applied to speech enhancement¹²
- They iteratively add noise to the training data and learn to undo this process

• Noise schedule: defined by the hyperparameters $f(t, x_t)$ and g(t)

¹Y.-J. Lu et al., "Conditional diffusion probabilistic model for speech enhancement," ICASSP, 2022

- Diffusion models are a new class of generative models that have recently been applied to speech enhancement¹²
- They iteratively add noise to the training data and learn to undo this process

• Noise schedule: defined by the hyperparameters $f(t, x_t)$ and g(t)

¹Y.-J. Lu et al., "Conditional diffusion probabilistic model for speech enhancement," ICASSP, 2022

- Diffusion models are a new class of generative models that have recently been applied to speech enhancement¹²
- They iteratively add noise to the training data and learn to undo this process

- Noise schedule: defined by the hyperparameters $f(t, \boldsymbol{x}_t)$ and g(t)
- Sampler: numerical method used to integrate the reverse process

¹Y.-J. Lu et al., "Conditional diffusion probabilistic model for speech enhancement," *ICASSP*, 2022

٠

Introduction – Adaptation to speech enhancement

- $\begin{array}{ccc} \text{Output image} & \longleftrightarrow & \text{Clean spectrogram} \end{array} \\ \end{array}$
- Text prompt \longleftrightarrow Noisy spectrogram

Introduction – Adaptation to speech enhancement

 Output image ↔ Clean spectrogram Text prompt ↔ Noisy spectrogram

Introduction – Adaptation to speech enhancement

- Output image ↔ Clean spectrogram
 Text prompt ↔ Noisy spectrogram
- Provoke a drift towards the noisy spectrogram¹²

¹S. Welker et al., "Speech enhancement with score-based generative models in the complex STFT domain," INTERSPEECH, 2022

Introduction – Adaptation to speech enhancement

- Output image <-> Clean spectrogram
 Text prompt <-> Noisy spectrogram
- Provoke a drift towards the noisy spectrogram¹²

¹S. Welker *et al.*, "Speech enhancement with score-based generative models in the complex STFT domain," *INTERSPEECH*, 2022
 ²J. Richter *et al.*, "Speech enhancement and dereverberation with diffusion-based generative models," *IEEE/ACM Trans. Audio, Speech, and Lang. Process.*, 2023

Motivation

- Goal: apply findings from image generation literature¹ to improve speech enhancement performance
 - Neural network preconditioning based on first principles
 - Second-order Heun-based sampler

Motivation

- Goal: apply findings from image generation literature¹ to improve speech enhancement performance
 - Neural network preconditioning based on first principles
 - Second-order Heun-based sampler
- **Problem**: the drift coefficient $-\gamma(\boldsymbol{x}_t \boldsymbol{y})$ cannot be written in the form $f(t)\boldsymbol{x}_t$

Motivation

- Goal: apply findings from image generation literature¹ to improve speech enhancement performance
 - Neural network preconditioning based on first principles
 - Second-order Heun-based sampler
- **Problem**: the drift coefficient $-\gamma(\boldsymbol{x}_t \boldsymbol{y})$ cannot be written in the form $f(t)\boldsymbol{x}_t$
- Solution: change of variable $oldsymbol{n}_t = oldsymbol{x}_t oldsymbol{y}$

Or more generally,

$$\mathrm{d}\boldsymbol{n}_t = f(t)\boldsymbol{n}_t\,\mathrm{d}t + g(t)\,\mathrm{d}\boldsymbol{\omega}_t$$

Motivation

- Goal: apply findings from image generation literature¹ to improve speech enhancement performance
 - Neural network preconditioning based on first principles
 - Second-order Heun-based sampler
- **Problem**: the drift coefficient $-\gamma(\boldsymbol{x}_t \boldsymbol{y})$ cannot be written in the form $f(t)\boldsymbol{x}_t$
- Solution: change of variable $oldsymbol{n}_t = oldsymbol{x}_t oldsymbol{y}$

Or more generally,

$$\mathrm{d}\boldsymbol{n}_t = f(t)\boldsymbol{n}_t\,\mathrm{d}t + g(t)\,\mathrm{d}\boldsymbol{\omega}_t$$

· This allows to write

$$p(\boldsymbol{n}_t|\boldsymbol{n}_0) = \mathcal{N}(\boldsymbol{n}_t; s(t)\boldsymbol{n}_0, s(t)^2 \sigma(t)^2 \mathbf{I})$$

where

$$s(t) = \exp \int_0^t f(\xi) \,\mathrm{d}\xi$$
 and $\sigma(t)^2 = \int_0^t \frac{g(\xi)^2}{s(\xi)^2} \,\mathrm{d}\xi$

- Modifications to SGMSE+M¹:
 - Shifted-cosine noise schedule²
 - Neural network preconditioning³
 - Heun-based sampler³ instead of PC sampler⁴

¹ J.-M. Lemercier et al., "Analysing diffusion-based generative approaches versus discriminative approaches for speech restoration," *ICASSP*, 2023

²E. Hoogeboom et al., "simple diffusion: End-to-end diffusion for high resolution images," ICML, 2023

³T. Karras et al., "Elucidating the design space of diffusion-based generative models," NeurIPS, 2022

⁴Y. Song et al., "Score-based generative modeling through stochastic differential equations," ICLR, 2021

- Modifications to SGMSE+M¹:
 - Shifted-cosine noise schedule²
 - Neural network preconditioning³
 - Heun-based sampler³ instead of PC sampler⁴
- Evaluation in matched and mismatched conditions:
 - Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse response databases

Speech:	TIMIT	LibriSpeech	WSJ	Clarity	VCTK
Noise:	TAU	NOISEX	ICRA	DEMAND	ARTE
Room:	Surrey	ASH	BRAS	CATT	AVIL

- ²E. Hoogeboom et al., "simple diffusion: End-to-end diffusion for high resolution images," ICML, 2023
- ³T. Karras et al., "Elucidating the design space of diffusion-based generative models," NeurIPS, 2022
- ⁴Y. Song et al., "Score-based generative modeling through stochastic differential equations," ICLR, 2021

- Modifications to SGMSE+M¹:
 - Shifted-cosine noise schedule²
 - Neural network preconditioning³
 - Heun-based sampler³ instead of PC sampler⁴
- Evaluation in matched and mismatched conditions:
 - Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse response databases
 - N = 1 or N = 4 databases are used for the training condition and the remaining databases are used for the mismatched condition
 - · Results are averaged across 5 different combinations

Speech:	TIMIT	LibriSpeech	WSJ	Clarity	VCTK
Noise:	TAU	NOISEX	ICRA	DEMAND	ARTE
Room:	Surrey	ASH	BRAS	CATT	AVIL

¹ J.-M. Lemercier et al., "Analysing diffusion-based generative approaches versus discriminative approaches for speech restoration," ICASSP, 2023

- ²E. Hoogeboom et al., "simple diffusion: End-to-end diffusion for high resolution images," ICML, 2023
- ³T. Karras et al., "Elucidating the design space of diffusion-based generative models," NeurIPS, 2022

⁴Y. Song *et al.*, "Score-based generative modeling through stochastic differential equations," *ICLR*, 2021

- Modifications to SGMSE+M¹:
 - Shifted-cosine noise schedule²
 - Neural network preconditioning³
 - Heun-based sampler³ instead of PC sampler⁴
- Evaluation in matched and mismatched conditions:
 - Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse response databases
 - N = 1 or N = 4 databases are used for the training condition and the remaining databases are used for the mismatched condition
 - Results are averaged across 5 different combinations

Noise:		LibriSpeech NOISEX ASH	WSJ ICRA BRAS	Clarity DEMAND CATT	VCTK ARTE AVIL	Training Testing
--------	--	------------------------------	---------------------	---------------------------	----------------------	---------------------

- ²E. Hoogeboom et al., "simple diffusion: End-to-end diffusion for high resolution images," ICML, 2023
- ³T. Karras et al., "Elucidating the design space of diffusion-based generative models," NeurIPS, 2022
- ⁴Y. Song *et al.*, "Score-based generative modeling through stochastic differential equations," *ICLR*, 2021

- Modifications to SGMSE+M¹:
 - Shifted-cosine noise schedule²
 - Neural network preconditioning³
 - Heun-based sampler³ instead of PC sampler⁴
- Evaluation in matched and mismatched conditions:
 - Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse response databases
 - N = 1 or N = 4 databases are used for the training condition and the remaining databases are used for the mismatched condition
 - Results are averaged across 5 different combinations

- ²E. Hoogeboom et al., "simple diffusion: End-to-end diffusion for high resolution images," ICML, 2023
- ³T. Karras *et al.*, "Elucidating the design space of diffusion-based generative models," *NeurIPS*, 2022
- ⁴Y. Song *et al.*, "Score-based generative modeling through stochastic differential equations," *ICLR*, 2021

- Modifications to SGMSE+M¹:
 - Shifted-cosine noise schedule²
 - Neural network preconditioning³
 - Heun-based sampler³ instead of PC sampler⁴
- Evaluation in matched and mismatched conditions:
 - Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse response databases
 - N = 1 or N = 4 databases are used for the training condition and the remaining databases are used for the mismatched condition
 - Results are averaged across 5 different combinations

Speech: Noise: Room:	TIMIT TAU Surrey	LibriSpeech NOISEX ASH	WSJ ICRA BRAS	Clarity DEMAND CATT	VCTK ARTE AVIL	Training Testing
----------------------------	------------------------	------------------------------	---------------------	---------------------------	----------------------	---------------------

- ²E. Hoogeboom et al., "simple diffusion: End-to-end diffusion for high resolution images," ICML, 2023
- ³T. Karras et al., "Elucidating the design space of diffusion-based generative models," NeurIPS, 2022
- ⁴Y. Song et al., "Score-based generative modeling through stochastic differential equations," ICLR, 2021

- Modifications to SGMSE+M¹:
 - Shifted-cosine noise schedule²
 - Neural network preconditioning³
 - Heun-based sampler³ instead of PC sampler⁴
- Evaluation in matched and mismatched conditions:
 - Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse response databases
 - N = 1 or N = 4 databases are used for the training condition and the remaining databases are used for the mismatched condition
 - Results are averaged across 5 different combinations

- ²E. Hoogeboom et al., "simple diffusion: End-to-end diffusion for high resolution images," ICML, 2023
- ³T. Karras et al., "Elucidating the design space of diffusion-based generative models," NeurIPS, 2022
- ⁴Y. Song et al., "Score-based generative modeling through stochastic differential equations," ICLR, 2021

- Modifications to SGMSE+M¹:
 - Shifted-cosine noise schedule²
 - Neural network preconditioning³
 - Heun-based sampler³ instead of PC sampler⁴
- Evaluation in matched and mismatched conditions:
 - Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse response databases
 - N = 1 or N = 4 databases are used for the training condition and the remaining databases are used for the mismatched condition
 - Results are averaged across 5 different combinations

Speech: Noise: Room:	TIMIT TAU Surrey	LibriSpeech NOISEX ASH	WSJ ICRA BRAS	Clarity DEMAND CATT	VCTK ARTE AVIL	Training Testing
----------------------------	------------------------	------------------------------	---------------------	---------------------------	----------------------	---------------------

- ²E. Hoogeboom et al., "simple diffusion: End-to-end diffusion for high resolution images," ICML, 2023
- ³T. Karras et al., "Elucidating the design space of diffusion-based generative models," NeurIPS, 2022
- ⁴Y. Song et al., "Score-based generative modeling through stochastic differential equations," ICLR, 2021

- Modifications to SGMSE+M¹:
 - Shifted-cosine noise schedule²
 - Neural network preconditioning³
 - Heun-based sampler³ instead of PC sampler⁴
- Evaluation in matched and mismatched conditions:
 - Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse response databases
 - N = 1 or N = 4 databases are used for the training condition and the remaining databases are used for the mismatched condition
 - · Results are averaged across 5 different combinations

Speech:	TIMIT	LibriSpeech	WSJ	Clarity	VCTK	Training
Noise:	TAU	NOISEX	ICRA	DEMAND	ARTE	0
Room:	Surrey	ASH	BRAS	CATT	AVIL	Testing

¹ J.-M. Lemercier et al., "Analysing diffusion-based generative approaches versus discriminative approaches for speech restoration," ICASSP, 2023

- ²E. Hoogeboom et al., "simple diffusion: End-to-end diffusion for high resolution images," ICML, 2023
- ³T. Karras et al., "Elucidating the design space of diffusion-based generative models," NeurIPS, 2022

⁴Y. Song *et al.*, "Score-based generative modeling through stochastic differential equations," *ICLR*, 2021

- Modifications to SGMSE+M¹:
 - Shifted-cosine noise schedule²
 - Neural network preconditioning³
 - Heun-based sampler³ instead of PC sampler⁴
- Evaluation in matched and mismatched conditions:
 - Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse response databases
 - N = 1 or N = 4 databases are used for the training condition and the remaining databases are used for the mismatched condition
 - · Results are averaged across 5 different combinations

	TIMIT TAU Surrey	LibriSpeech NOISEX ASH	WSJ ICRA BRAS	Clarity DEMAND CATT	VCTK ARTE AVIL	Training Testing
--	------------------------	------------------------------	---------------------	---------------------------	----------------------	---------------------

- ²E. Hoogeboom et al., "simple diffusion: End-to-end diffusion for high resolution images," ICML, 2023
- ³T. Karras et al., "Elucidating the design space of diffusion-based generative models," NeurIPS, 2022
- ⁴Y. Song et al., "Score-based generative modeling through stochastic differential equations," ICLR, 2021

- Modifications to SGMSE+M¹:
 - Shifted-cosine noise schedule²
 - Neural network preconditioning³
 - Heun-based sampler³ instead of PC sampler⁴
- Evaluation in matched and mismatched conditions:
 - Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse response databases
 - N = 1 or N = 4 databases are used for the training condition and the remaining databases are used for the mismatched condition
 - Results are averaged across 5 different combinations

- ²E. Hoogeboom et al., "simple diffusion: End-to-end diffusion for high resolution images," ICML, 2023
- ³T. Karras et al., "Elucidating the design space of diffusion-based generative models," NeurIPS, 2022
- ⁴Y. Song et al., "Score-based generative modeling through stochastic differential equations," ICLR, 2021

- Modifications to SGMSE+M¹:
 - Shifted-cosine noise schedule²
 - Neural network preconditioning³
 - Heun-based sampler³ instead of PC sampler⁴
- Evaluation in matched and mismatched conditions:
 - Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse response databases
 - N = 1 or N = 4 databases are used for the training condition and the remaining databases are used for the mismatched condition
 - Results are averaged across 5 different combinations

- ²E. Hoogeboom et al., "simple diffusion: End-to-end diffusion for high resolution images," ICML, 2023
- ³T. Karras et al., "Elucidating the design space of diffusion-based generative models," NeurIPS, 2022
- ⁴Y. Song et al., "Score-based generative modeling through stochastic differential equations," ICLR, 2021

- Modifications to SGMSE+M¹:
 - Shifted-cosine noise schedule²
 - Neural network preconditioning³
 - Heun-based sampler³ instead of PC sampler⁴
- Evaluation in matched and mismatched conditions:
 - Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse response databases
 - N = 1 or N = 4 databases are used for the training condition and the remaining databases are used for the mismatched condition
 - Results are averaged across 5 different combinations

Speech: Noise: Room:		LibriSpeech NOISEX ASH		Clarity DEMAND CATT	VCTK ARTE AVIL	Training Testing
----------------------------	--	------------------------------	--	---------------------------	----------------------	---------------------

- ²E. Hoogeboom et al., "simple diffusion: End-to-end diffusion for high resolution images," ICML, 2023
- ³T. Karras *et al.*, "Elucidating the design space of diffusion-based generative models," *NeurIPS*, 2022
- ⁴Y. Song *et al.*, "Score-based generative modeling through stochastic differential equations," *ICLR*, 2021

- Modifications to SGMSE+M¹:
 - Shifted-cosine noise schedule²
 - Neural network preconditioning³
 - Heun-based sampler³ instead of PC sampler⁴
- Evaluation in matched and mismatched conditions:
 - Noisy speech is generated using 5 speech corpora, 5 noise databases and 5 room impulse response databases
 - N = 1 or N = 4 databases are used for the training condition and the remaining databases are used for the mismatched condition
 - Results are averaged across 5 different combinations

Noise:		LibriSpeech NOISEX ASH	WSJ ICRA BRAS	Clarity DEMAND CATT	VCTK ARTE AVIL	Training Testing
--------	--	------------------------------	---------------------	---------------------------	----------------------	---------------------

- ²E. Hoogeboom et al., "simple diffusion: End-to-end diffusion for high resolution images," ICML, 2023
- ³T. Karras et al., "Elucidating the design space of diffusion-based generative models," NeurIPS, 2022
- ⁴Y. Song et al., "Score-based generative modeling through stochastic differential equations," ICLR, 2021

Results

Results

Results

DTU

Results

		ΔPESQ	ΔESTOI	$\Delta {\sf SNR}$				ΔPESQ	ΔESTOI	ΔSNR
Matched	Conv-TasNet	0.63	0.19	8.58			Conv-TasNet	0.44	0.16	7.38
	DCCRN	0.41	0.12	7.11		Matched	DCCRN	0.34	0.12	6.52
	MANNER	0.68	0.17	7.24			MANNER	0.52	0.15	6.23
	SGMSE+M	0.65	0.18	7.33			SGMSE+M	0.55	0.18	6.74
	Ours	0.72	0.20	7.27			Ours	0.61	0.19	6.54
Mismatched	Conv-TasNet	0.12	0.01	3.24		p	Conv-TasNet	0.29	0.09	5.77
	DCCRN	0.11	0.02	3.25		Mismatche	DCCRN	0.23	0.07	5.42
	MANNER	0.17	0.04	3.40			MANNER	0.38	0.10	5.61
	SGMSE+M	0.15	0.04	3.79		Ш	SGMSE+M	0.42	0.13	6.42
	Ours	0.19	0.06	3.52		Ë	Ours	0.44	0.15	5.88

(a) N = 1

(b) N = 4

Table: Average Δ PESQ, Δ ESTOI and Δ SNR scores in matched and mismatched conditions when training with N = 1 (a) or N = 4 (b) speech corpora, noise databases and BRIR databases. SGMSE+M and Ours use $n_{steps} = 32$.

Conclusion

- The drift towards the noisy speech previously proposed for diffusion-based speech enhancement makes it difficult to apply recent advances from image generation literature
- To overcome this, the diffusion process is reformulated using a change of variable
- A different neural network preconditioning and noise schedule only had a small effect on performance
- The Heun-based sampler substantially improved the performance at few sampling steps
- All systems substantially benefited from training with multiple corpora in mismatched conditions

Thank you!