Leveraging Data Collection and Unsupervised Learning for Code-switched Tunisian Arabic Automatic Speech Recognition

Ahmed Amine Ben Abdallah *, **Ata Kaboudi**, Amir Kanoun, Salah Zaiem * April 2024

* First Authors

Background

02

03

01 Inspired from many other languages

A Mix of Arabic, French, Englisjh , Italien , Turkish , Amazigh

No spelling conventions

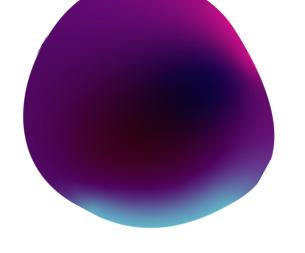
No Offiicial Reference Rules, Grammar to Tunisian Arabic Dialect

Code-Swiched

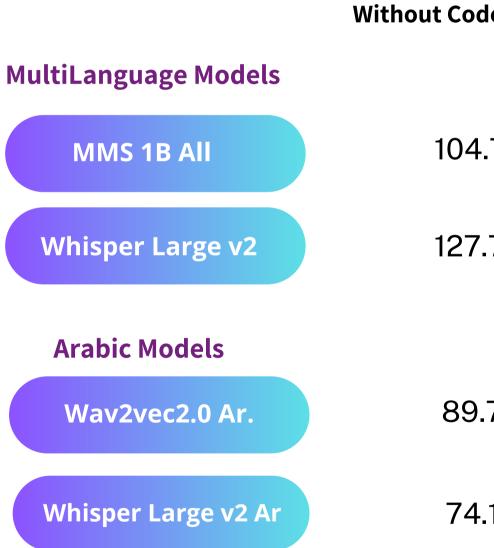
One Sentence can contain 3 different languages

Sample

too many languages هوا الي احنا نحكيو Le probleme



Failure of Non-Specific Models



de Switching	With Code Switching	
1.7	102.0	
7.7	105.8	
).7	96.7	
4.1	85.9	

Word Error Rate For Various Models

Data Problem

Lack of Code Switched data

Current datasets Lack code switched aspect and incorporate only Arabic transcripts.

• STAC has 5% Code Switching

Data Problem

Lack of Code Switched data

Current dataset lack the Code Switched aspect and incorporate only arabic transcripts.

• STAC has 5% Code Switching

Domain Specific Data

Previous work is focus on specific domains and lack a broader richnesss of the Tunisian dialect.

• TARIC pertains Conversations from Train Stations

Data Problem

Lack Of Code-Switched Data

Current Dataset Available Lack the Code switched aspect and incorporate only Arabic transcripts.

• STAC has 5% Code Switching

Domain Specific Data

Previous work is focus on specific domains and lack a broader richnesss of the Tunisian dialect.

• TARIC pertains Conversations from **Train Stations**

Lack Of Open Source Models

Most previous work is proprietary and no open source model was implemented.

How to collect and validate Code-Switched data focusing on Tunisian dialect?

01 How to collect and validate Code-Switched data focusing on Tunisian dialect?

02 How to Implement a Code-Switched approach to transcription ?

01 How to collect and validate Code-Switched data focusing on Tunisian dialect?

02 How to Implement a Code-Switched approach to transcription ?

O3 How to evaluate ASR for languages with no spelling conventions

Contributions

01 OS Datasets

Introducing TunSpeech and TunSpeech CS: Open Source Datasets for Tunisian ASR

Introducing two New Speech-totext models for Tunisian dialect: A dedicated Tunisian model and a Code-Switched model.

Human Evaluation

Assess noise caused by lack of spelling conventions through human evaluation

Data Collection

PreProcessing :

1

2

Removed, diaclitics, punctuation and special characters

Latin characters for French and English Arabic characters for Arabic



PreProcessing :

1

2

3

Removed Diaclitics

Text

Latin Characters for French and English Arabic Characters for Arabic

Seperated Languages with Tags

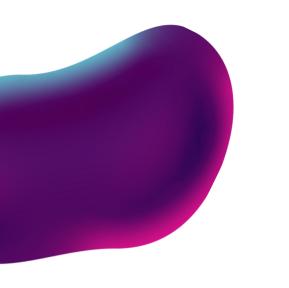
Audio

1 WebRTC-VAD segmentation

2 MultiSpeaker detection and removal

Music detection and Removal

3



Dataset Overview

Public Datasets

Tunswitch

Unlabeled Audios

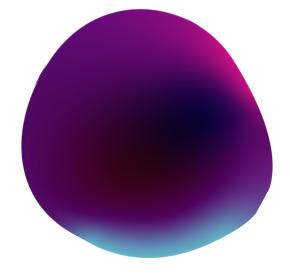
We Leverage a range of public datasets from previous works

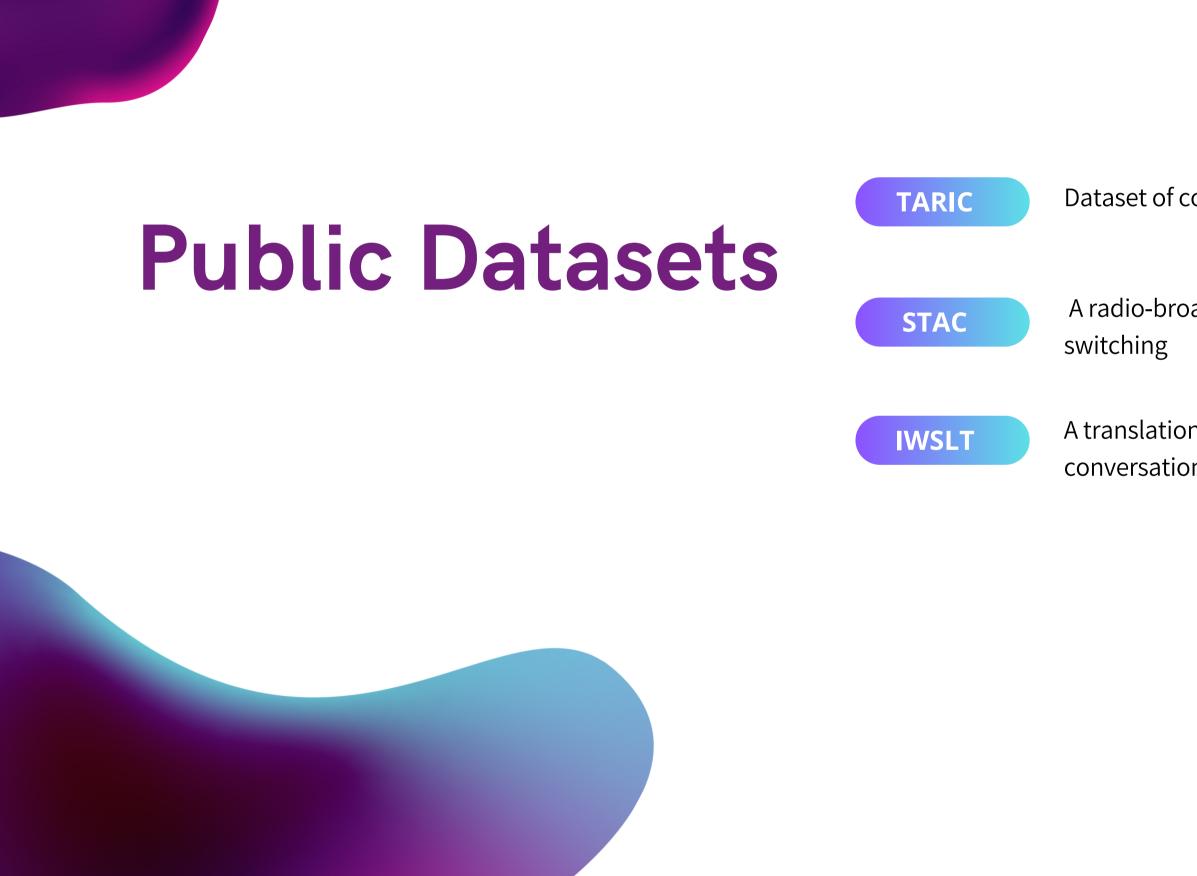
TARIC **IWSLT STAC** Our own custom collected Models

A Set of unlabeled audios to be used for self superviser approach

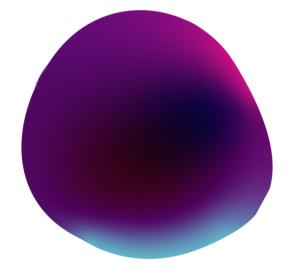
Web Scraped Text

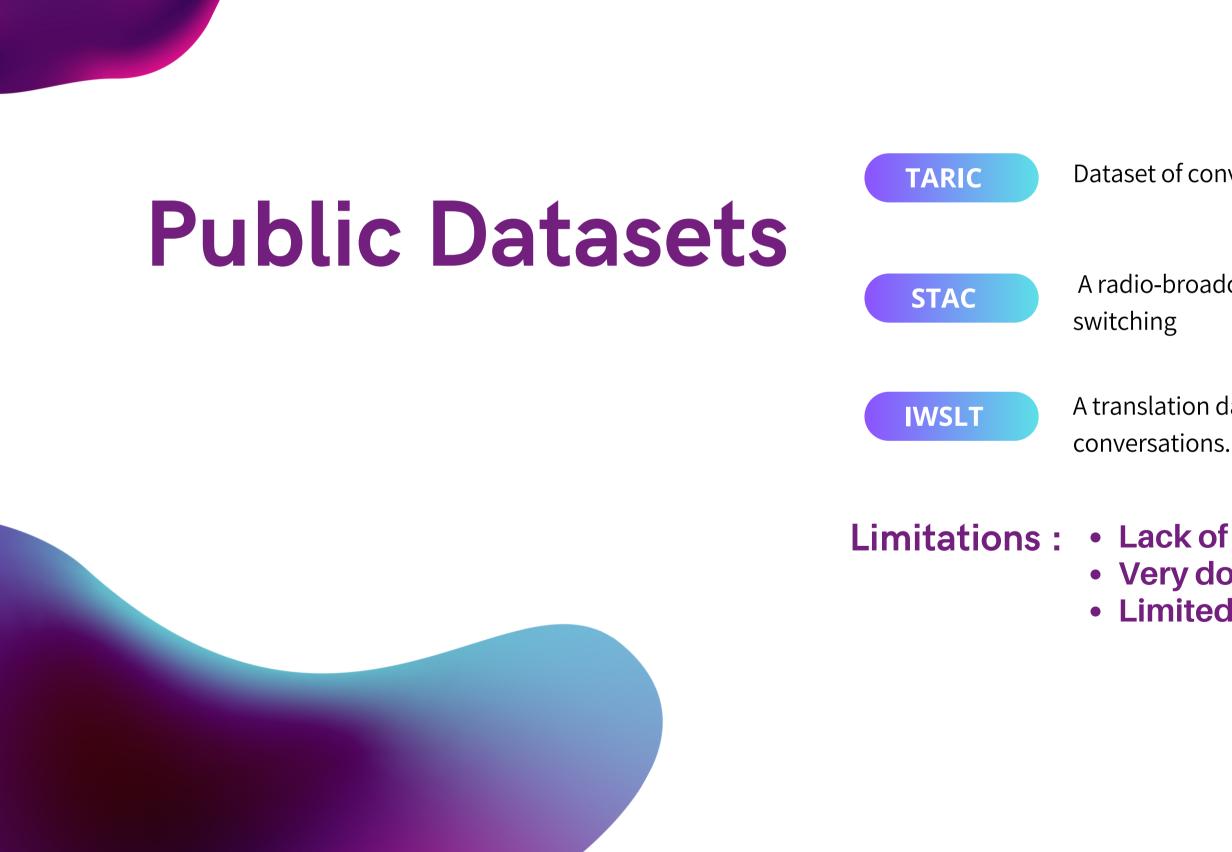
we scraped a Tunisian textual corpus to be used in LM finetuning





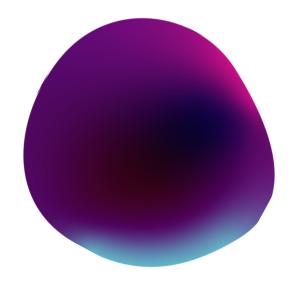
conversations in train stations	 10hours
padcast-based dataset with slight code-	 4hours
on dataset consisting in telephonic ons.	 160 hours

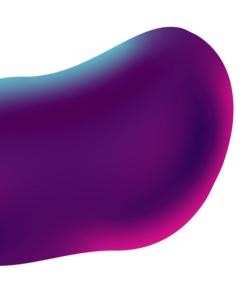




Dataset of conversations in train stations	 10hours
A radio-broadcast-based dataset with slight code- switching	 4hours
A translation dataset consisting in telephonic	 160 hours

Limitations : • Lack of Code-Swiched data • Very domain specific • Limited number of speakers





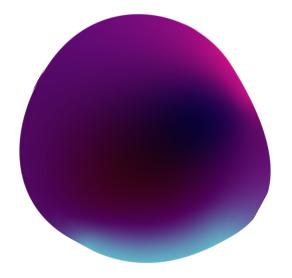
TunSwich TO

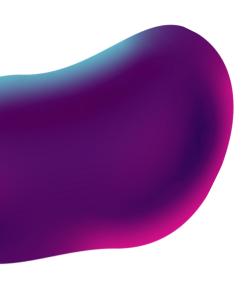
- TO: Tunisian Only
- Tunisiya

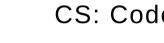
Sourced sentences from previous text collections

Volunteers to record the spoken Sentences

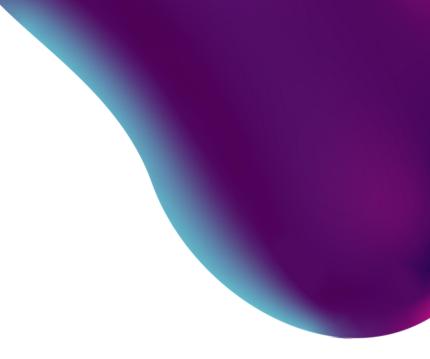
Collection of 2631 distinct phrases from 82 Speakers





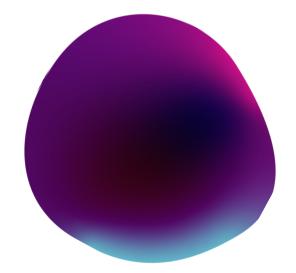


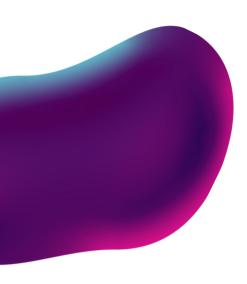
TunSwich CS



CS: Code Switched

From spontanous from radio broadcast





TunSwich CS

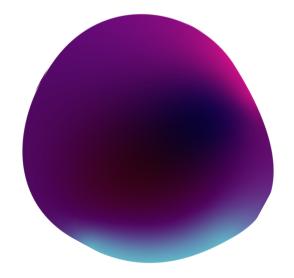
From spo Manual a maintain Tool

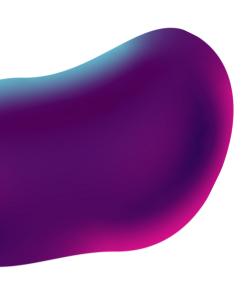
9 Hours Dataset

CS: Code Switched

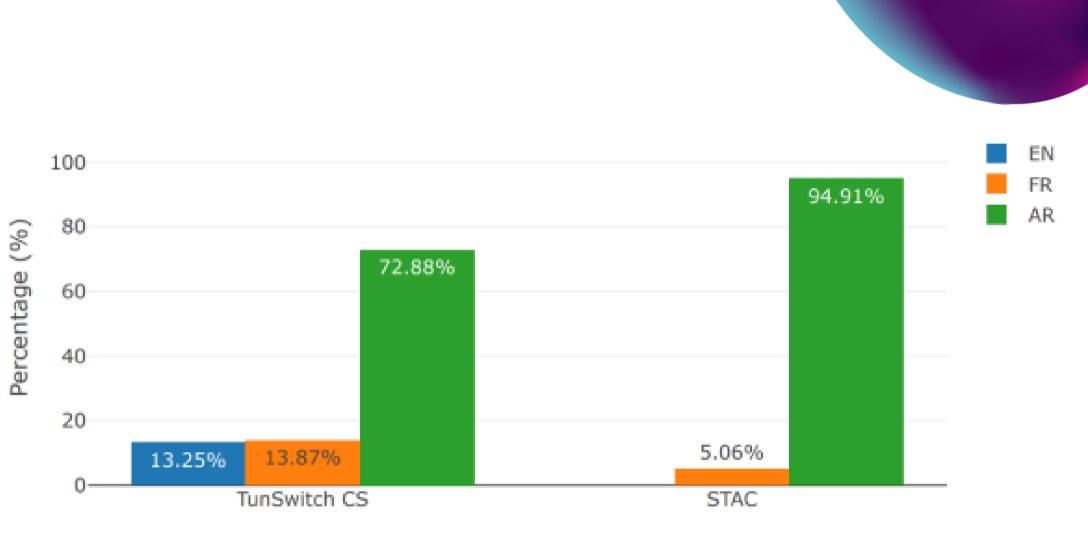
From spontanous from radio broadcast

Manual annotation with instruction set to maintain consistancy and Doccano Annotation

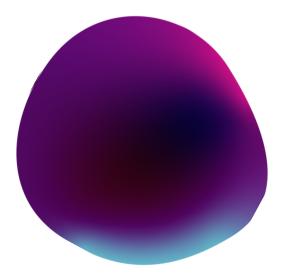




TunSwich CS



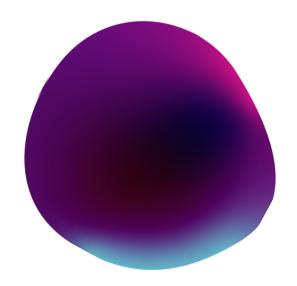
Comparative Code Switching Percentage



Unlabelled Data • Collect

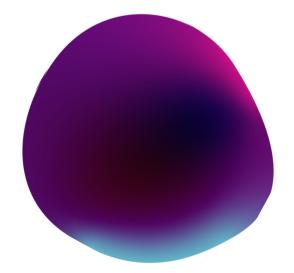
153 hours after pre-processing

- For a Self-supervised approach
- Collection of national TV shows videos



Scraped Text Corpus

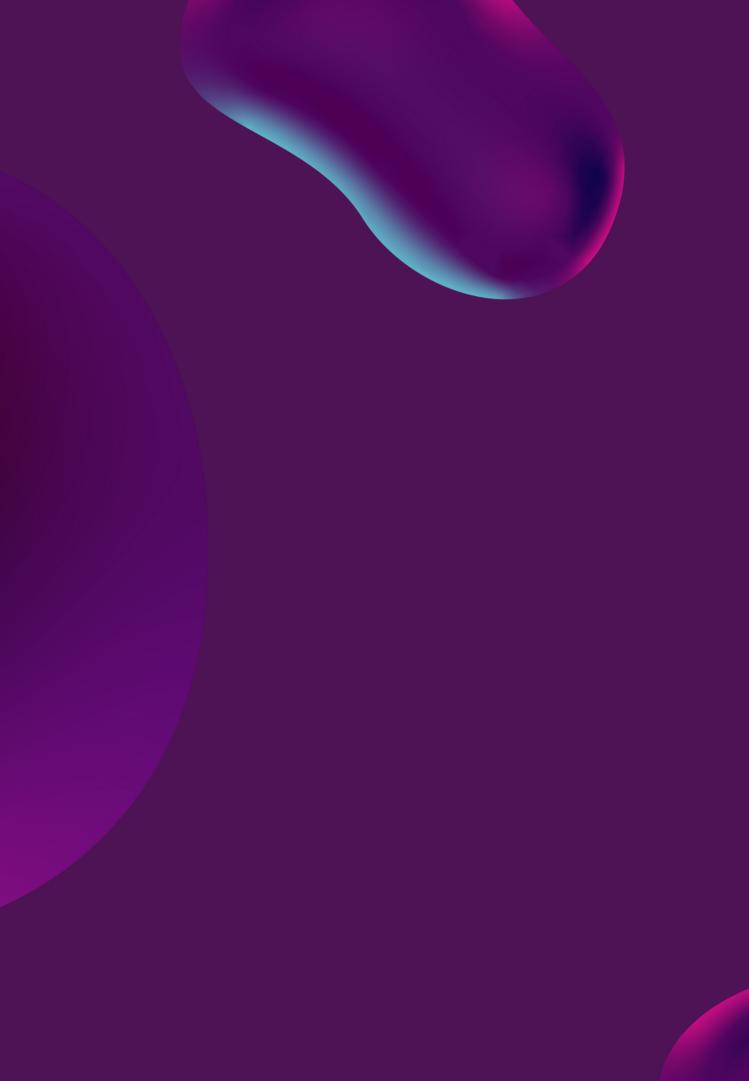
Scraped from various website to finetune LM



Our Data

	Dataset	PROSODY	CODE- SWITCHING	TRAIN(H)	Dev(H)	Test(H)	Labeled
	IWSLT	Spontaneous	X	151h 24m 47s	4h 55m 51s	4h 36m 28s	Y
	STAC	Spontaneous	Y	2h 29m 8s	n/A	n/a	Y
	TARIC	Spontaneous	X	9h 25m 44s	17 m 29s	12m 5s	Y
	TunSwitch TO	Read	X	2h 29m 29s	4m 25s	23m 39s	Y
Our Contribution —	TunSwitch CS	Spontaneous	Y	8h 15m 35s	15m 43s	25m 12s	Y
	SelfSwitch TO	Spontaneous	Y	153h 18m 22s	n/a	n/a	X

Models



BASE MODEL

ENCODER, FINE-TUNABLE

WavLM Large

This model produced a better performance than wav2vec2.0 XLSR eventhought it is trained only on english DECODER

MLP

Three dense layers with LeakyReLU activations, and batch normalization between layers, and is trained with Connectionist Temporal Classification (CTC) loss LANGUAGE MODEL

4-gram LM

Candidate sentences are rescored using a 4-gram language model trained with the KenLM toolkit and implemented with the PyCTCDecode library

Language Modelling Options

01

Without LM

We will not use a language model to rescore output probablities

02

With inDomain LM

We utilize Languages model within theWe leverage a language model outsidetraining dataof training scope

03

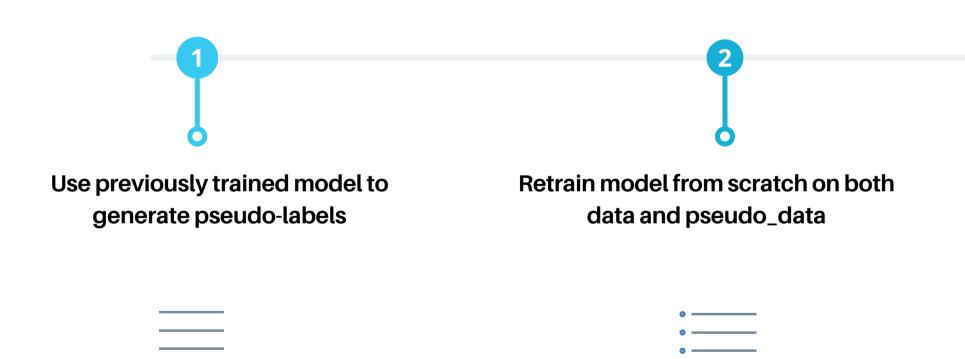
With OutDomain LM

Results : Tunisian Only

	TARIC		IWSLT		Tunswtich TO	
	CER	WER	CER	WER	CER	WER
Previous Wok	-	22.6	-	41.5	-	-
	CER	WER	CER	WER	CER	WER
WithoutLM	6.44	12.84	20.28	42.74	13.34	41.45
With inDomain LM	6.23	10.81	20.27	38.8	12.5	36.1
With OutDomain LM	6.13	10.5	20.32	39.01	10.08	26.64

Self Training

The Straightforward naive approach



Unlabeled Data , 153h from national TV shows

Pseudolabeled Data

Comparative assement to evaluate Improvements

3

Results : Tunisian Only with Self-Training

	TARIC		IWS	IWSLT		Tunswtich TO	
	CER	WER	CER	WER	CER	WER	
Previous Wok	-	22.6	_	41.5	-	_	
Without Self-Training	CER	WER	CER	WER	CER	WER	
WithoutLM	6.44	12.84	20.28	42.74	13.34	41.45	
WithinDomainLm	6.23	10.81	20.27	38.8	12.5	36.1	
With OutDomainLM	6.13	10.5	20.32	39.01	10.08	26.64	
With Self-Training	CER	WER	CER	WER	CER	WER	
Without LM	6.3	11.82	20.49	42.49	12.65	38.25	
With InDomainLm	6.29	10.83	21.18	39.46	12.42	36.07	
With OutDomainLM	6.22	10.5	21.18	39.53	9.67	25.54	

Code-Switched Approach

Few Shot Code Switching

Tunisian Model

Tunswitch Model

Best Model From Previous Experiences

English Model

Speechbrain/asr-wav2vec2-commoncoive en

Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model is combined with two DNN layers and finetuned on CommonVoice EN. withCTC greedy decoder.

Mixer

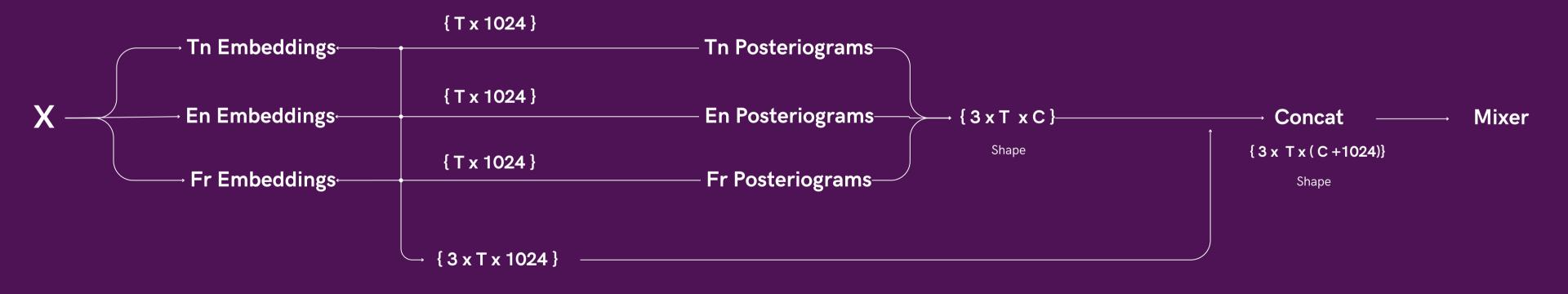
Custom BiLSTM Model

French Model

Speechbrain/asr-wav2vec2-commoncoive fr

Acoustic model (wav2vec2.0 + CTC). A pretrained wav2vec 2.0 model is combined with two DNN layers and finetuned on CommonVoice FR. withCTC greedy decoder.

Few-Shot Code-Switching



Shape

T : Frames

C : Character Count

Language modelling options

01

Without LM

02

With TunisanOnly LM

Use a Tunisian only corpora for reference

03

With Code-Swiched LM

Use a Code-Switched, French, English And Arabic corpora

With EN-FR Enriched LM

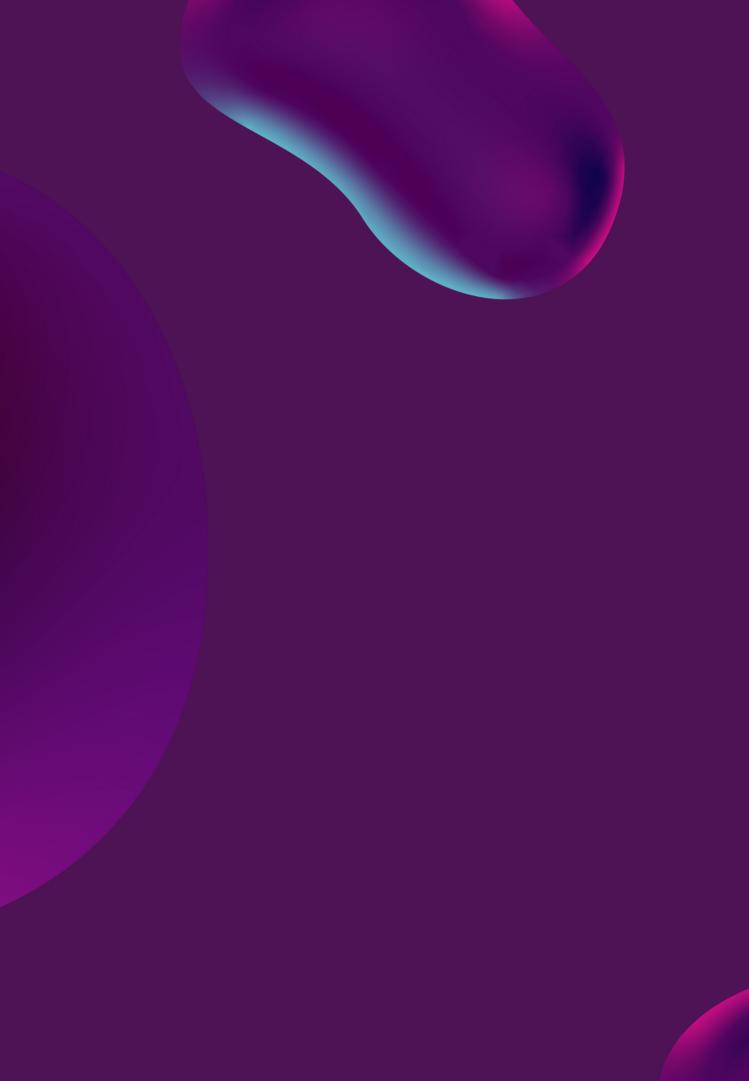
Enrich corpora with 10 K English and French monolingual sentences

Code Switching Results

TUNSWITCH CS

	CER	WER
Without LM	13.71	40.65
With TunisanOnly LM	17.57	47.45
With CodeSwiched LM	12.77	30.41
With EN-FR enriched LM	10.5	29.47

Evaluation



Problem

Reference

جيبلي کاس ما

معناها فما واقع مرير لحقيقة لي يعيشوا فيه هوما

معناها فما واقع مرير الحقيقة لي يعيشوا فيه هوما

Prediction

جيبلي کاس ماء

Problem

No spelling convention Observation is consistant across many samples

Reference

جيبلي کاس ما_

معناها فما واقع مرير لحقيقة لي يعيشوا فيه هوما

معناها فما واقع مرير الحقيقة لي يعيشوا فيه هوما

Prediction

جيبلي کاس ماء

Sorry to non arabic speakers

Human Evaluation

Sentence Error Rate (SER)

Annotators

25 Tunsian annotators, all fluent English and French speakers. tasked with 50 audios each.



Human Evaluation

Sentence Error Rate (SER)

Annotators

25 Tunsian annotators, all fluent English and French speakers. tasked with 50 audios each.

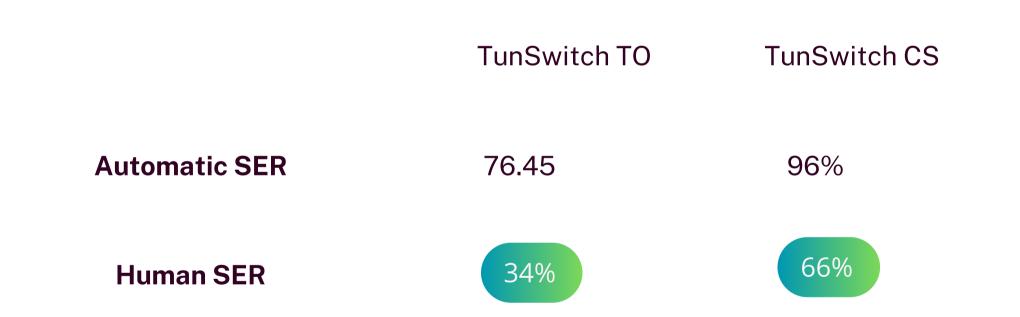
Evaluation

Documents detailing the process were distributed, simplifying decisions to binary for each text output. A text is valid only if approved by two annotators. Evaluate Both TO and CS.



Human Evaluation

Sentence Error Rate (SER)



Observations

Human evaluation lowers SER by 42% and 29%, with an 80% annotator agreement, highlighting WER underrates model performance."

Conclusion

01

We propose A Tunisian Only and Code Switched Dataset For Tunisian ASR

02

We propose a Tunisian only model and a code switched model for Tunisian ASR

03

We explore automatic and human evaluation for non standardized languages

Future Improvements

O¹ Pretrain WavLm from scratch

02 Expand Code-Switched dataset To improve results

03 Explore more advanced semi supervised techniques

References

MMS 1B All	Vineel Pratap, Andros Tjandra, Bowen Shi, Paden Tomasello, Arun Babu Vyas, Maryam Fazel-Zarandi, Alexei Baevski, Yossi Adi, Xiaohui Zhang, W "Scaling speech technology to 1,000+ languages," arXiv, 2023.
Wav2vec2 Ar	Jonatas Grosman, "Fine-tuned XLSR-53 large model for speech recogni
Whisper Large v2	Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLea recognition via large-scale weak supervision," 2022
Tunisiya	Karen McNeil, "Tunisian arabic corpus: Creating a written corpus of an 'u vol. 30, 2018.

Babu, Sayani Kundu, Ali Elkahky, Zhaoheng Ni, Apoorv g, Wei-Ning Hsu, Alexis Conneau, and Michael Auli,

ognition in Arabic," 2021.

Leavey, and Ilya Sutskever, "Robust speech

an 'unwritten'language," Arabic corpus linguistics,

Open Source Resources

DataSets

Models

Paper

The Team

Salah Zaim

Ahmed Amine Ben Abdallah

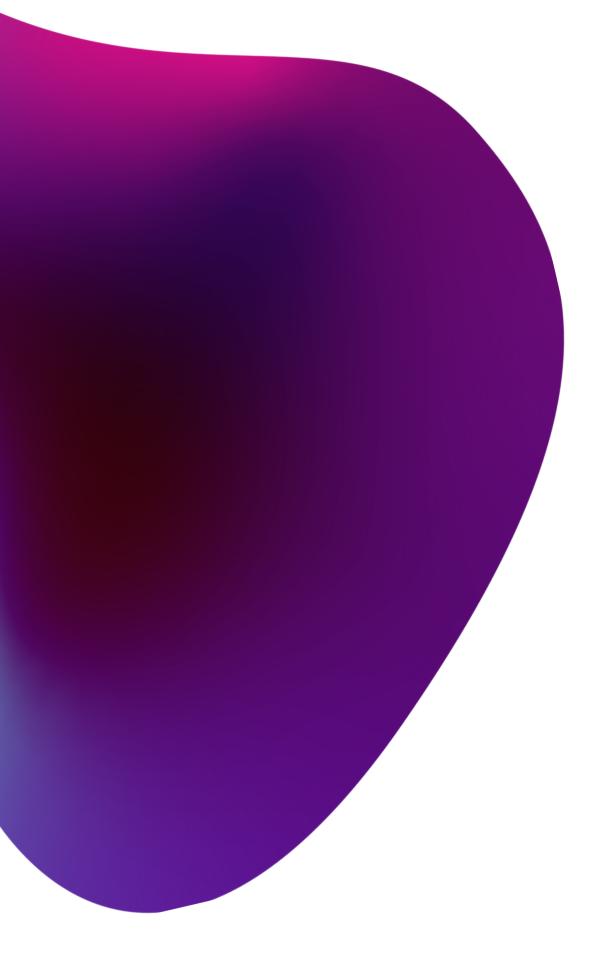
phD in Speech Processing and Machine Learning , Telecom Paris; Paris Machine Learning Engineer ABSHORE Tunisia

Ata Kaboudi

Masters at University of Michigan Software Engineer at CBRE. Founding Enginner at Memorality Michigan

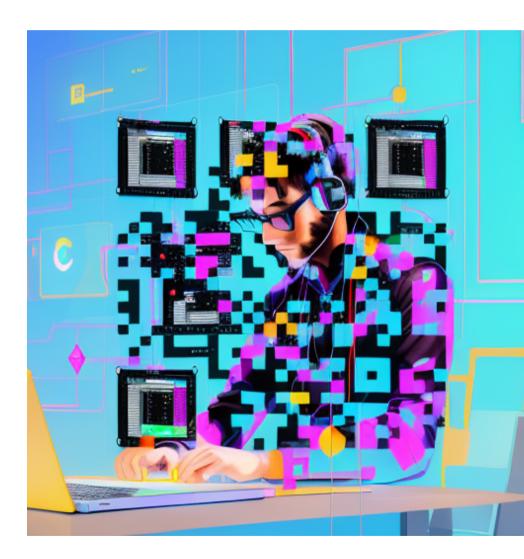
Ahmed Amine Kanoun

Chief of Projects at ABSHORE Tunisia



Thank You

Questions ?



Scan For My Contact Details

