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Motivation: Tracking filter (1/2)

f (Φ̃t−1) f (Φ̃t|Φ̃t−1) f (Φ̃t|Ψt)

f (Ψt|Φ̃t)

Ψt
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t← t + 1

Figure: Typical tracking filter.
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Motivation: Tracking filter (1/2)
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Figure: Typical tracking filter.
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Motivation: Tracking filter (2/2)

f (Φ̃t−1) f (Φ̃t|Φ̃t−1) f (Φ̃t|Ψt)

f̂ (Ψt|Φ̃t)

f (Ψt|Φ̃t)

Ψt

Dynamical model

Observation model

Clustering

t← t + 1

Figure: Typical filter for tracking multiple extended targets: clustering is used to only consider a subset of
data association hypotheses in the likelihood.

1Karl Granström, Maryam Fatemi, and Lennart Svensson. Poisson Multi-Bernoulli Mixture Conjugate Prior for
Multiple Extended Target Filtering. IEEE Trans. Aerosp. Electron. Syst., 56(1):208-225, 2020
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Motivation: Clustering example (1/4)

Figure: Observation.
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Motivation: Clustering example (2/4)

Figure: Distance based clustering: low radius.
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Motivation: Clustering example (3/4)

Figure: Distance based clustering: medium radius.
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Motivation: Clustering example (4/4)

Figure: Distance based clustering: large radius.
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Motivation: Separation of clusters (1/3)
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Figure: Well-separated targets.
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Motivation: Separation of clusters (2/3)
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Z(x1) + Z(x2)

Figure: Separable targets.
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Motivation: Separation of clusters (3/3)
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Figure: Non-separable targets.
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Figure: Illustration of scenario with two sensors and three extended targets.
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Measurement process

▶ Targets: Φ̃ = {C1, . . . ,CL} for Cl = (cl,El).

▶ Measurement model: zk,i(C) = vi + εk,i(vi), vi = c + εE
i .

▶ Measurement process: Ψk = {zk,i(Cl)}l,i
⋃

Ψc
k.

▶ Aggregated observations: Ψ =
⋃K

k=1 Ψk.
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Statistical formulation (1/2)

Assume Ψk|Φ̃ is Poisson with intensity

Z(k)
Φ̃,λc(ξ) = λc +

L∑
l=1

ηk(ξ|Cl) (1)

where ηk(ξ|Cl) = ρ̃k(Cl)KΣ̃k(Cl)
(ξ − cl) and

KΣ(ξ − c) =
exp

(
− 1

2 (ξ − c)TΣ−1(ξ − c)
)√

(2π)d|Σ|
. (2)

We call this a doubly inhomogeneous-generalized shot noise Cox process (DI-GSNCP).
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Statistical formulation (2/2)

The model parameters are θ = (Φ̃, λ, λc) and, up to a constant, the posterior is
Π(θ|Ψ) =

∏K
k=1 Πlikelihood(Ψk|Φ̃, λc)Πprior(Φ̃, λ, λ

c). Using the Poisson assumption, the
observed likelihood is

Πlikelihood(Ψk|Φ̃, λc) = exp((1− λc)|D| −
L∑

l=1

ρ̃k(cl))

Mk∏
mk=1

Z(k)
Φ̃,λc(pk,mk

). (3)

The prior is proportional to

Πprior(Φ̃, λ, λ
c) = λL

1R+(λ)1R+(λ
c)

L∏
l=1

ΠE(Σ
E
l )

L∏
j=1
j ̸=l

1R+(∥cl − cj∥ − R) (4)

where 1A(x) is the indicator function which equals 1 if x ∈ A and 0 otherwise, ΠE is the extent
prior density, and we have assumed uniform priors on the cluster center and clutter
intensities.
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Parameter estimation: Markov chain Monte Carlo

▶ Using Markov chain Monte Carlo (MCMC), a Markov chain θ0, θ1, . . . is constructed as
follows: given the previous configuration in the Markov chain, i.e., θi−1, a possible new
configuration of model parameters is sampled as θ∗ ∼ Q(θi−1)(·) from a predefined
transition density. We define the acceptance probability function
α(θi−1, θ

∗) = min
{

1, Π(θ∗|Ψ)
Π(θi−1|Ψ)

}
and sample U ∼ Unif(0, 1). If U < α(θi−1, θ

∗) set
θi = θ∗, otherwise let θi = θi−1.

▶ In this work, the parameters in θ are updated sequentially. Firstly, the driving process Φ̃
is updated followed by an update of λ and λc. We define the transition density for
updating the driving process as a birth-death-move proposal: with probability pm a move
is taken, with probability (1− pm)pb(θi−1) a birth is proposed, and with probability
(1− pm)(1− pb(θi−1)) a death is proposed.
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Simulation setup

▶ We define a scenario with two sensors scanning over 6 time epochs. The spatial domain
is D = [0, 50]× [0, 20]× [0, 10] m3 and we assume extent prior as
el,1, el,2, el,3 ∼ Unif(1, 1.5) and el,4, el,5, el,6 ∼ Unif(−0.5, 0.5). Moreover, we let R = 8 m,
λ = 20

|D| , and λc = 35
|D| .

▶ Baselines: Oracle and DBSCAN.

▶ Performance metric: Optimal sub-pattern assignment (OSPA) metric with pair-wise
metric defined by the Gaussian Wasserstein distance.
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Conclusion

▶ A methodology for target state estimation in multi-sensor multi-scan multiple extended
target sensing scenarios is developed. The method is based on parametrizing the target
states through a DI-GSNCP taking spatial properties of multiple sensors into account
and using a model jump MCMC algorithm to estimate the parameters.

▶ The method scales only linearly in the number of measurements, effectively estimating
the target states without requiring data association.

▶ Numerical experiments demonstrate the benefits over spatial proximity based clustering
in high clutter scenarios with closely spaced targets.

▶ In future work, we aim to generalize the method to: (i) non-linear measurement models,
(ii) moving targets, (iii) inter-cluster interactions.
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Thank you for listening!

Questions?
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