

MDRT: MULTI-DOMAIN SYNTHETIC SPEECH LOCALIZATION

Amit Kumar Singh Yadav[†], Kratika Bhagtani[†], Sriram Baireddy[†] Paolo Bestagini[‡], Stefano Tubaro[‡], Edward J. Delp[†]

[†]School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA [‡]Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy

- Abstract

Context

Goal

- High quality synthetic speech impersonating human speaker is easily available and often misused in supporting fraud
- Limited work on localizing the synthetic segments within the speech signal

3 - Proposed Method

• MDRT processes the *i*-th time domain waveform segment x_i and corresponding *i*-th spectrogram segment X_i using a convolutional layer and linear layer to get latent representation vectors Z_{ti} and Z_{si} , respectively, where $i = \{1, 2, \dots, L\}$

4 - Experimental Results

Improved Localization Performance

• MDRT has best performance w.r.t 12 existing methods on PartialSpoof dataset for localizing synthetic speech segments of duration 160ms. It uses approximately half the number of parameters (\approx 182M) as in method *B*12 (\approx 317M)

Method Name	Training Sample Duration	Feature Used	Classification Network	EER (in %)
B01	utt.	IECC	LCNN+BLSTM	40.20
B02	160ms	LFCC		16.21
B03	utt.	IECC	H-MIL	33.12
B04	utt.	LFCC	LS-H-MIL	31.96
B05	utt.			44.00
B06	160ms			15.93
B07	160ms, utt.	160ms, utt. 160ms, utt. LFCC SELCNN+BLSTM		20.04
B08	160ms, utt.			17.75
B09	160ms, utt.			17.55
B10	160ms, utt.		17.77	
<i>B</i> 11	160ms, utt.			16.60
B12	20ms~640ms	W2V2-L	5 gMLP	9.24
MDRT	160ms	W2V2-B+M2D	ResNet-style MLP	8.82

- To localize the synthetic speech segments in a partially synthetic speech signal
- Existing methods use single domain features, proposed Multi-Domain ResNet Transformer (MDRT) obtains multidomain features to improve localization

2 - Introduction

Problem formulation

• Consider **x** as the time domain speech signal and **X** as its corresponding mel-scale spectrogram representation

• Positional encoding P_{ti} and P_{si} are added to Z_{ti} and Z_{si} , respectively and the two latent representations obtained *i.e.*, $(Z_{ti} +$ P_{ti}) and $(Z_{si} + P_{si})$ are processed by selfsupervised pre-trained transformer neural networks: Wav2Vec2-Base and M2D4Speech

• The time domain feature F_{ti} obtained by Wav2Vec2-Base and the spectral feature F_{si} obtained by M2D4Speech are concatenated to obtain multi-domain feature vector F_i

• Therefore, for each $x_i \in \mathbf{x}$ and $X_i \in \mathbf{X}$, we obtain a multi-domain feature vector $F_i \in F_i$, where $\mathbf{F} = \{F_1, F_2, ..., F_L\}$

• MDRT processes obtained multi-domain fea-

• MDRT also performs better than existing methods for localizing synthetic speech segments of duration smaller than 160ms

Testing Duration	Method Name	Training Sample Duration	Feature Used	Classification Network	EER (in %)
20ms	B13 B12	20ms 20ms~160ms 20ms	CQCC W2V2-L W2V2-B+M2D	LCNN 5 gMLP ResNet-style MLP	27.17 12.84 11.14
40ms	<i>B</i> 12	20ms~160ms 40ms	W2V2-L W2V2-B+M2D	5 gMLP ResNet-style MLP	11.94 10.18
80ms	<i>B</i> 12	20ms~160ms 80ms	W2V2-L W2V2-B+M2D	5 gMLP ResNet-style MLP	10.92 9.82

Ablation Study

- Both can be divided into L nonoverlapping segments, each of duration 20ms *i.e.*, $\mathbf{x} = \{x_1, x_2, \dots, x_L\}$ and the corresponding spectrogram $\mathbf{X} = \{oldsymbol{X}_1, oldsymbol{X}_2, \dots, oldsymbol{X}_L\}$
- x and corresponding X have ground truth label $\mathbf{y} = \{y_1, y_2, \dots, y_L\}$, s.t. $y_i \in$ $\{0,1\}$, where 0 and 1 indicate bona fide and synthetic speech segment, respectively
- Goal is to develop a localization model that classify each speech segment as bona fide or synthetic *i.e.*, provides the probability vector for the entire speech signal, $\mathbf{p} = \{p_1, p_2, \dots, p_L\}$

Evaluation Metric and Dataset

tures using a novel ResNet-style Multi Layer Perceptron (MLP)

• Contrary to existing ResNet-style MLP that perform single channel convolution, the ResNet-style MLP used in MDRT performs convolution on multi-channel features

• Each channel in ResNet-style MLP corresponds to multi-domain feature F_i obtained from a different speech segment. So, multichannel convolution helps to capture temporal artifacts from consecutive speech segments and the dropout layer improves generalization

Indicates:

• effectiveness of proposed ResNet-style MLP classification network than existing networks • better performance by processing features from multi-domain than single-domain • benefit of using augmentation and dropout

Hyperparameters/ Configuration		EER (in %)
	1 FC Layer 1 BLSTM+1FC Layer	2.89 2.84
Classification Network	2 BLSTM+1FC Layer 1 gMLP 5 gMLP	2.49 4.28 2.22
Tracture	ResNet-style MLP	1.97
Choice	last hidden layer feature	1.97 1.93
Domain	Single Domain (only time-domain)DomainSingle Domain (only spectrogram)Multi Domain (both)	
Augmentation & Dropout	w/o aug. and dropout w/ aug. w/ aug. and dropout	1.66 1.64 1.54

5 - Conclusion

- Used Equal Error Rate (EER) as the performance metric, computed from Receiver Operating Characteristic curve
- EER is the rate where False Negative Rate and False Positive Rate are equal
- EER of 0% means perfect performance and EER of 50% corresponds to random performance
- Used PartialSpoof dataset, contains 25.4K training, 24.8K validation, and 71.2K evaluation speech signals
- In the above figure, N=1 for 20ms segments, N=2 for 40ms and so on. MDRT is tested on localizing 20ms, 40ms, 80ms and 160ms synthetic segments in a partially synthetic speech
- Proposed a novel Multi-Domain ResNet Transformer (MDRT) for localizing synthetic speech segments
- MDRT performs better than several existing methods that use single-domain features
- MDRT uses half the number of parameters than the most promising existing method
- Future research will investigate performance of MDRT on synthetic speech from recent diffusion-based generators, and robustness to compressed and noisy speech signals