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1 - Abstract
Context

• High quality synthetic speech imperson-
ating human speaker is easily available
and often misused in supporting fraud

• Limited work on localizing the synthetic
segments within the speech signal

Goal

• To localize the synthetic speech segments
in a partially synthetic speech signal

• Existing methods use single domain
features, proposed Multi-Domain ResNet
Transformer (MDRT) obtains multi-
domain features to improve localization

2 - Introduction
Problem formulation

• Consider x as the time domain speech sig-
nal and X as its corresponding mel-scale
spectrogram representation

• Both can be divided into L non-
overlapping segments, each of dura-
tion 20ms i.e., x = {x1,x2, . . . ,xL}
and the corresponding spectrogram
X = {X1,X2, . . . ,XL}

• x and corresponding X have ground
truth label y = {y1, y2, . . . , yL}, s.t. yi ∈
{0, 1}, where 0 and 1 indicate bona fide
and synthetic speech segment, respec-
tively

• Goal is to develop a localization model
that classify each speech segment as bona
fide or synthetic i.e., provides the proba-
bility vector for the entire speech signal,
p = {p1, p2, . . . , pL}

Evaluation Metric and Dataset

• Used Equal Error Rate (EER) as the per-
formance metric, computed from Re-
ceiver Operating Characteristic curve

• EER is the rate where False Negative Rate
and False Positive Rate are equal

• EER of 0% means perfect performance
and EER of 50% corresponds to random
performance

• Used PartialSpoof dataset, contains 25.4K
training, 24.8K validation, and 71.2K
evaluation speech signals

3 - Proposed Method

• MDRT processes the i-th time domain wave-
form segment xi and corresponding i-th spec-
trogram segment Xi using a convolutional
layer and linear layer to get latent representa-
tion vectors Zti and Zsi, respectively, where
i = {1, 2, . . . , L}

• Positional encoding Pti and Psi are added
to Zti and Zsi, respectively and the two
latent representations obtained i.e., (Zti +
Pti) and (Zsi + Psi) are processed by self-
supervised pre-trained transformer neural net-
works: Wav2Vec2-Base and M2D4Speech

• The time domain feature Fti obtained by
Wav2Vec2-Base and the spectral feature Fsi ob-
tained by M2D4Speech are concatenated to ob-
tain multi-domain feature vector Fi

• Therefore, for each xi ∈ x and Xi ∈ X, we
obtain a multi-domain feature vector Fi ∈ F,
where F = {F1,F2, . . . ,FL}

• MDRT processes obtained multi-domain fea-
tures using a novel ResNet-style Multi Layer
Perceptron (MLP)

• Contrary to existing ResNet-style MLP
that perform single channel convolution, the
ResNet-style MLP used in MDRT performs
convolution on multi-channel features

• Each channel in ResNet-style MLP corre-
sponds to multi-domain feature Fi obtained
from a different speech segment. So, multi-
channel convolution helps to capture temporal
artifacts from consecutive speech segments and
the dropout layer improves generalization

• In the above figure, N=1 for 20ms segments,
N=2 for 40ms and so on. MDRT is tested on lo-
calizing 20ms, 40ms, 80ms and 160ms synthetic
segments in a partially synthetic speech

4 - Experimental Results
Improved Localization Performance

• MDRT has best performance w.r.t 12 existing
methods on PartialSpoof dataset for localizing
synthetic speech segments of duration 160ms.
It uses approximately half the number of pa-
rameters (≈182M) as in method B12 (≈317M)

Method
Name

Training Sample
Duration

Feature
Used

Classification
Network

EER
(in %)

B01 utt. LFCC LCNN+BLSTM 40.20
B02 160ms 16.21

B03 utt. LFCC H-MIL 33.12
B04 utt. LS-H-MIL 31.96

B05 utt.

LFCC SELCNN+BLSTM

44.00
B06 160ms 15.93
B07 160ms, utt. 20.04
B08 160ms, utt. 17.75
B09 160ms, utt. 17.55
B10 160ms, utt. 17.77
B11 160ms, utt. 16.60

B12 20ms∼640ms W2V2-L 5 gMLP 9.24

MDRT 160ms W2V2-B+M2D ResNet-style MLP 8.82

• MDRT also performs better than existing
methods for localizing synthetic speech seg-
ments of duration smaller than 160ms

Testing
Duration

Method
Name

Training Sample
Duration

Feature
Used

Classification
Network

EER
(in %)

20ms
B13 20ms CQCC LCNN 27.17
B12 20ms∼160ms W2V2-L 5 gMLP 12.84

20ms W2V2-B+M2D ResNet-style MLP 11.14

40ms B12 20ms∼160ms W2V2-L 5 gMLP 11.94
40ms W2V2-B+M2D ResNet-style MLP 10.18

80ms B12 20ms∼160ms W2V2-L 5 gMLP 10.92
80ms W2V2-B+M2D ResNet-style MLP 9.82

Ablation Study

Indicates:
• effectiveness of proposed ResNet-style MLP
classification network than existing networks
• better performance by processing features
from multi-domain than single-domain
• benefit of using augmentation and dropout

Hyperparameters/
Configuration

EER
(in %)

Classification
Network

1 FC Layer 2.89
1 BLSTM+1FC Layer 2.84
2 BLSTM+1FC Layer 2.49

1 gMLP 4.28
5 gMLP 2.22

ResNet-style MLP 1.97

Feature
Choice

all-hidden layer feature 1.97
last hidden layer feature 1.93

Domain
Single Domain (only time-domain) 1.93
Single Domain (only spectrogram) 2.20

Multi Domain (both) 1.66

Augmentation
&

Dropout

w/o aug. and dropout 1.66
w/ aug. 1.64

w/ aug. and dropout 1.54

5 - Conclusion
• Proposed a novel Multi-Domain ResNet

Transformer (MDRT) for localizing synthetic
speech segments

• MDRT performs better than several existing
methods that use single-domain features

• MDRT uses half the number of parameters
than the most promising existing method

• Future research will investigate performance
of MDRT on synthetic speech from recent
diffusion-based generators, and robustness
to compressed and noisy speech signals
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