alexa Nalexa

Turn-taking and Backchannel Prediction with Acoustic and Large Language Model Fusion

Jinhan Wang¹, Long Chen², Aparna Khare², Anirudh Raju², Pranav Dheram², Di He², Minhua Wu², Andreas Stolcke², Venkatesh Ravichandran² ¹ University of California, Los Angeles, USA ² Amazon Alexa Al, USA

I. Introduction

Objective: More natural Voice Assistant System

 Human-human like conversational experience.
 Chat instead of query-answer / no push-to-talk.
 Proper backchanneling and turn-taking.

Motivations:

 Large language models (LLM) promise to better capture formal dependencies and meaning relations in language.
 Fusion of LLM and acoustic models (AM) for dialogue modeling has not been extensively studied.

IV. Experiments

1

ICASSP

2024 KOREA

- Dataset: Switchboard
 - 2438 dialogues, two speakers each, ~260hrs
 - Continuing speech/ Backchannel / Turn-taking is labeled by self-defined heuristics at each token end.
 - Statistics (Cont vs Back vs Turn tokens)
 - Train: 71k (downsample) vs 56k vs 86k
 - Dev: 6k (downsample) vs 5k vs 7k
 Test: 123k vs 2.4k vs 3.2k

• Contribution:

 Propose a fusion framework for turn-taking and backchannel prediction with LLM and acoustic models.
 A novel instruction fine-tuning method in multi-task manner to unlock LLM's power rather than text encoding.

II. Multi-Modal Fusion

• Model:

Model		#param	Fine-tune	Trainable
AM	HuBERT	95M	Frozen	0%
I N A	GPT2	117M	Full	100%
LIVI	Redpajama	3B	LoRA	0.4%

• Evaluation: Area-under-the-curve(AUC), Equal Error Rate(EER) for each class and in average.

V. Results and Discussion

Table 1: Results for single modality and fusion models.

Method	AUC(Cont)	AUC(Back)	AUC(Turn)	AUC(avg)	EER(avg)
HuBERT	0.7323	0.6455	0.7401	0.7060	34.87
GPT2	0.8510	0.7744	0.8623	0.8292	24.47
+ HuBERT Opt1	0.8783	0.7798	0.884	0.8474	22.63
+ HuBERT Opt2	0.8778	0.7862	0.8859	0.8500	22.77
RedPajama	0.8629	0.7739	0.8685	0.8351	23.60
+ HuBERT Opt1	0.8992	0.7862	0.9116	0.8657	20.33
+ HuBERT Opt2	0.8982	0.7743	0.9006	0.8577	21.57

- Joint Modeling: embedding late fusion with classifier head
 Fusion Options (Opt):
 - Opt1: load pre-trained LLM; trainable: LM, classifier
 - Opt2: load fine-tuned LLM and freeze; trainable: classifier

III. Multi-task Instruction Fine-tuning

Table 2: Results	with	multi-task	instruction	fine-t	uning
------------------	------	------------	-------------	--------	-------

Method	AUC(Cont)	AUC(Back)	AUC(Turn)	AUC(avg)	EER(avg)
GPT2	0.8416	0.7863	0.8582	0.8287	24.13
+ HuBERT Opt1	0.8726	0.7901	0.8766	0.8464	22.50
+ HuBERT Opt2	0.8806	0.7838	0.8890	0.8511	22.23
RedPajama	0.8668	0.8097	0.8796	0.8520	21.80
+ HuBERT Opt1	0.9000	0.8229	0.9127	0.8785	19.50
+ HuBERT Opt2	0.8980	0.8182	0.9129	0.8764	19.60
RedPajama + History	0.8747	0.8074	0.8912	0.8578	21.63
+ HuBERT Opt1	0.9029	0.8184	0.9197	0.8803	19.30

- Redpajama > GPT2. It benefits more from Instruction fine-tuning.
- Turn-taking prediction benefits remarkably from fusion.
- Multi-task Instruction fine-tuning improves backchannel the most.
- Including dialogue history in instruction only improves continuing
- Augment each sample 3 times with 3 instructions (Inst). *Classifier i* 's update is only triggered by samples with *Inst i*, where *i* ∈ {0, 1, 2}
- Shared LLM backbone model.

speech and turn-taking prediction. Backchannel is more local.

Pos & Neg backchannel scores are pushed to the range ends.
Backchannel relay most on syntactic context. Instruction helps.