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LSTM Model and Multiview-LSTM Model
o Words Ty = [Wi, W1, Weto, Wits, Wiiq)
o POS-tag / Chunking-tag

Ut = [ktj Kii1,Riio, Riys, kt+4]

o Multiview: concatenate x; and v/v;
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Motivation .

* Rich punctuations paly important roles in many NLP tasks.

* ASR systems provide plain word streams.

 Small-scale models are hard to guarantee performance and generalization
ability.

* We need data and model with larger scale to adapt to various genres
of text.
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Data Comparison

 Data used in previous research
o PTB, CTB
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) small, out-of-date

* Rule Settings

o Conjunction: insert comma before a conjunction. * The more data, the higher performance! (even though there are

o Parenthesis: insert comma or period to the front and rear of parenthesis. some noise)

o Interrogative sentence: insert question mark after the tone word if + Syntax information can boost the model when using small corpora.
interrogative indicator is detected.

o Exclamatory sentence: insert exclamation mark after the tone word if

exclamatory indicator is detected.
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Long-term dependency matters!

Need more design of both architecture and algorithm.
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e What we used Corpus = domain | People’s Daily, Articles | 12M CRF-basef:I IV.Ic.>deI vs. LSTM Model (left, F1-score of each label)
abundant diversity o1 | training Weibo 135G o LSTM significantly outperform CRF-based model.
large scale corpus in-domain | Weibo . 4.5M o LSTM model knows better about when to stop.
rmal/inform out-of-domain | Speech Transcriptions | 1.2M o In Chinese, the selection of punctuations relies more on long-term context.
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It’s hard to distinguish comma and period.
TaSk Formu Iatlon e Scale vs. Performance (right, F1-score of sentence boundary)
* Punctuation Symbols = Labels o Increasing data scale helps improves model performance
Orlglnal Symbols " o Low model complexity may limits the potential of large data
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