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TL;:DR:

In this work, we show how to hide a binary vector in
audio that can be recovered even when the audio has
been altered significantly.



Let’s look at some examples.
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Watermarked Embedded key vector

Simulated over-the-air Recovered key vector Recovered key vector
(logits) (quantized)



Why should we care about hiding
binary vectors in audio clips?
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ARTIFICIAL INTELLIGENCE / TECH / CREATORS

4chan users embrace Al voice clone tool

/ Free Al voice cloning technology
from startup ElevenLabs has been
used by trolls to imitate the voices
of celebrities. The generated
audio ranges in content from
memes and erotica to virulent
hatespeech.

By James Vincent, a senior reporter who has covered Al, robotics, and more for
eight years at The Verge.

Jan 31, 2023, 5:00 AM PST | [J7 Comments / 7 New
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Attacks/Breaches | (O 5MINREAD [ENEWS

Al-Enabled Voice Cloning Anchors

Deepfaked Kidnapping

Virtual kidnapping is just one of many new artificial intelligence attack types that threat actors have

begun deploying, as voice cloning emerges as a potent new imposter tool.




What can speech synthesis providers do?
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If we find the message, the audio was generated by our system
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Perceptual transparency

watermark doesn’t ruin user experience

Capacity

can hide info like user IDs in the watermark

Robustness

watermark works under realistic conditions
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Desiderata

Perceptual transparency

Hard to remove, but low
information capacity

Carries lots of info, but
easy to remove

Sounds horrible
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Balancing these is hard!
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We only need 1 bit to answer “fake or not?”
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How can we robustly and
transparently hide a little
information in audio?
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Let’s make EI and |E| neural networks
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People have tried this!



DNN-A, Pavlovic et al. (2022)
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DNN-A, Pavlovic et al. (2022)

ﬁ Train on 6 key vectors (Noise, dropout, LPF)
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No explicit learning of an “un-
watermarked” class!
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Bit accuracy vs. known key vector, watermarked &
un-watermarked audio
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Bit accuracy vs. known key vector, watermarked &
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This lets us distinguish between watermarked
and unwatermarked audio using bit accuracy
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can calibrate experimentally to
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When targeting a low (1%) FPR, our approach
outperforms recent signal-processing and
neural-network watermarks!
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Neural vocoders can wipe out other watermarks while maintaining high audio quality!
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Neural vocoders can wipe out other watermarks while maintaining high audio quality!
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Redundant frame-level embedding helps against pitch- and time-scale modification
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Our approach preserves audio quality as
rated by human listeners.



% Recordings Correctly Identified
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Concurrent works:

e Timbre Watermark (Liu et al. 2024) uses a similar network design and
also demonstrates robustness against neural network-based
transformations

e WavMark (Chen et al. 2023) uses invertible neural networks to achieve
a higher watermark capacity, but considers a narrower and “gentler”
set of transformations

e AudioSeal (Roman et al. 2024) embeds a residual signal in the time
domain and likewise considers a narrower set of transformations



Future directions:
e Improved robustness to neural network-based transformations
e Robustness to adversarial (optimization-based) attacks

e Increased information capacity
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