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MaskMark: Robust Neural Watermarking for 
Real and Synthetic Speech

(Listening examples)



In this work, we show how to hide a binary vector in 
audio that can be recovered even when the audio has 

been altered significantly.

TL;DR:



Let’s look at some examples.
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(random chance is 50%)
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Watermarked Embedded key vector

Recovered key vector 
(logits)

Recovered key vector 
(quantized)

Simulated over-the-air

83% match



Why should we care about hiding 
binary vectors in audio clips?



2016: WaveNet

Expertise + compute + a large single-speaker dataset + lots of time  

= 
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$0 + 1-10 min. audio + 5 min. editing 

= 

2023: Suno Bark
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$0 + 1-10 min. audio + 5 min. editing 

= 







What can speech synthesis providers do?
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We can hide a message in all the audio we generate

We can check any audio for the message

If we find the message, the audio was generated by our system

“embed”

“watermark key”

“detect”

[0, 1, 1, 0, 0, 1, … ]

n bits



Watermarking



Watermarking

Embed the watermark
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Watermarking

Embed the watermark
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Watermarking

Embed the watermark

Detect the watermark

watermark key

E

D score (small)

≠

[0, 1, 1, 0, 0, 1, … ]
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Desiderata

≈1.

2. is big

3.

Perceptual transparency

Capacity

Robustness

watermark doesn’t ruin user experience

can hide info like user IDs in the watermark

watermark works under realistic conditions

is hard to remove from 
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Desiderata
Perceptual transparency

Capacity Robustness

Hard to remove, but low 
information capacity

Sounds horrible

Carries lots of info, but 
easy to remove



Balancing these is hard!



Robustness

watermark key

E D score (big)



Robustness

watermark key

E D score (small)C

channel

noise 
reverb  

compression  
pitch shift 

…



Robustness

D score (big)C

channel

noise 
reverb  

compression  
pitch shift 

…



We only need 1 bit to answer “fake or not?”



Desiderata
Perceptual transparency

Capacity Robustness

Robust & transparent 
watermarks



How can we robustly and 
transparently hide a little 

information in audio?



“EigenWatermark” (Tai & Mansour 2019)

Clean
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“EigenWatermark” (Tai & Mansour 2019)

Clean Watermarked Normalized 
Difference



Watermarked

Completely breaks the watermark!

“EigenWatermark” (Tai & Mansour 2019)



Watermarked Speed up 2%

Completely breaks the watermark!

“EigenWatermark” (Tai & Mansour 2019)



How can we robustly and 
transparently hide a little 

information in audio?
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What are we missing?



[0, 1, 1, 0, 0, 1, … ]

[-2.7, 10.1, 3.5, -0.1, -20.2, 3.6, … ]

cross-entropy loss

STFT loss

[0,   1,    1,    0,    0,     1,   … ]

> 0.5

Let’s make         and     neural networks

D

E D

E



[0, 1, 1, 0, 0, 1, … ]

[-2.7, 10.1, 3.5, -0.1, -20.2, 3.6, … ]

cross-entropy loss

STFT loss

[0,   1,    1,    0,    0,     1,   … ]

> 0.5

C

channel

Let’s make         and     neural networks

D

E D

E



People have tried this!
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DNN-A, Pavlovic et al. (2022)



DNN-A, Pavlovic et al. (2022)

[0, 1, 1, 0, 0, 1, … ]
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C

channel
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Train on 6 key vectors (Noise, dropout, LPF)

DE
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DNN-A Eigen
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DNN-A, Pavlovic et al. (2022)

[0, 1, 1, 0, 0, 1, … ]
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MaskMark

[0, 1, 1, 0, 0, 1, … ]

[-2.7, 10.1, 3.5, -0.1, -20.2, 3.6, … ]

cross-entropy loss

MR-STFT loss

[0,   1,    1,    0,    0,     1,   … ]

> 0.5

C

channel

(STFT Conformer) (STFT 2D CNN)

(Noise, dropout, LPF, HPF, pitch shift, 
speed, reverb, spectral gate)

Encodec-style gradient balancing

Encodec-style gradient balancing

Train on 64 key vectors

DE



Architecture details



Architecture details

We hide the same watermark 
information in every frame



No explicit learning of an “un-
watermarked” class!



64 learned watermarks
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64 learned watermarks

Detector prediction for 
audio with watermark 0

~100% bit accuracy



Bit accuracy vs. known key vector, watermarked & 
un-watermarked audio
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Bit accuracy vs. known key vector, watermarked & 
un-watermarked audio

Bit accuracy

C
ou

nt

~50% bit accuracy for 
unwatermarked

~100% bit accuracy 
for watermarked
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predict “unwatermarked” predict “watermarked”



0% 100%

𝜏

predict “unwatermarked” predict “watermarked”

can calibrate experimentally to 
hit desired false-positive rate



When targeting a low (1%) FPR, our approach 
outperforms recent signal-processing and 

neural-network watermarks!



Sample rate

Required audio length

Robustness

16kHz 44.1kHz

2s 1s

More  
robust

Less  
robust Proposed

48kHz

1s

Signal-processing

Neural audio codec

Neural vocoder

Neural denoiser

TPR @ 1% FPR = 0.00

0.00

0.00

0.00

0.73

0.39

0.01

1.00

0.97

0.45

0.82

0.99

DNN-A Eigen





Neural vocoders can wipe out other watermarks while maintaining high audio quality!



Neural vocoders can wipe out other watermarks while maintaining high audio quality!



Redundant frame-level embedding helps against pitch- and time-scale modification



Our approach preserves audio quality as 
rated by human listeners.





● Timbre Watermark (Liu et al. 2024) uses a similar network design and 
also demonstrates robustness against neural network-based 
transformations 

● WavMark (Chen et al. 2023) uses invertible neural networks to achieve 
a higher watermark capacity, but considers a narrower and “gentler” 
set of transformations 

● AudioSeal (Roman et al. 2024) embeds a residual signal in the time 
domain and likewise considers a narrower set of transformations

Concurrent works:



● Improved robustness to neural network-based transformations 

● Robustness to adversarial (optimization-based) attacks 

● Increased information capacity

Future directions:
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