MaskMark: Robust Neural Watermarking for Real and Synthetic Speech

Patrick O'Reilly¹, Zeyu Jin², Jiaqi Su², Bryan Pardo¹

IEEE ICASSP 2024

- 1. Northwestern University
- 2. Adobe Research

MaskMark: Robust Neural Watermarking for Real and Synthetic Speech

(Listening examples)

TL;DR:

In this work, we show how to hide a binary vector in audio that can be recovered even when the audio has been altered significantly.

Let's look at some examples.

This audio has no hidden vector

Clean

Clean

Watermarked

Clean

Watermarked

Normalized Difference

Watermarked

Embedded key vector

Watermarked

Embedded key vector

Simulated editing

Recovered key vector (logits)

Watermarked

Embedded key vector

Simulated editing

Recovered key vector (logits) Recovered key vector (quantized)

Watermarked

Embedded key vector

Watermarked

Embedded key vector

HiFiGAN resynthesis

Recovered key vector (logits)

HiFiGAN resynthesis

Recovered key vector (logits) Recovered key vector (quantized)

Watermarked

Embedded key vector

Watermarked

Embedded key vector

Simulated over-the-air

Recovered key vector (logits)

Simulated over-the-air

Recovered key vector (logits) Recovered key vector (quantized)

Why should we care about hiding binary vectors in audio clips?

2016: WaveNet

Expertise + compute + a large single-speaker dataset + lots of time

2016: WaveNet

Expertise + compute + a large single-speaker dataset + lots of time

2023: Suno Bark

\$0 + 1-10 min. audio + 5 min. editing

2023: Suno Bark

\$0 + 1-10 min. audio + 5 min. editing

ARTIFICIAL INTELLIGENCE / TECH / CREATORS

4chan users embrace AI voice clone tool to generate celebrity hatespeech

/ Free AI voice cloning technology from startup ElevenLabs has been used by trolls to imitate the voices of celebrities. The generated audio ranges in content from memes and erotica to virulent hatespeech.

By James Vincent, a senior reporter who has covered AI, robotics, and more for eight years at The Verge. Jan 31, 2023, 5:00 AM PST | 7 Comments / 7 New

Illustration by Alex Castro / The Verge

Attacks/Breaches 5 MIN READ BNEWS

AI-Enabled Voice Cloning Anchors Deepfaked Kidnapping

Virtual kidnapping is just one of many new artificial intelligence attack types that threat actors have begun deploying, as voice cloning emerges as a potent new imposter tool.

What can speech synthesis providers do?

We can **check** any audio for the message

We can **check** any audio for the message

We can **check** any audio for the message

"embed"

We can check any audio for the message

Watermarking

Watermarking

Embed the watermark

Watermarking

Embed the watermark

watermark key [0, 1, 1, 0, 0, 1, ...]
Embed the watermark

Embed the watermark

Detect the watermark

Embed the watermark

Detect the watermark

Embed the watermark

Embed the watermark

Detect the watermark

Embed the watermark

1. Hutter

Perceptual transparency

watermark doesn't ruin user experience

is hard to remove from

Perceptual transparency

watermark doesn't ruin user experience

Capacity

can hide info like user IDs in the watermark

is hard to remove from

Perceptual transparency

watermark doesn't ruin user experience

Capacity

can hide info like user IDs in the watermark

is hard to remove from

Robustness

watermark works under realistic conditions

Perceptual transparency

Perceptual transparency

Perceptual transparency

Balancing these is hard!

Robustness

Robustness

Robustness

We only need 1 bit to answer "fake or not?"

How can we robustly and transparently hide a little information in audio?

Clean

Clean

Watermarked

Clean

Watermarked

Normalized Difference

Watermarked

Completely breaks the watermark!

Watermarked

Speed up 2%

Completely breaks the watermark!

How can we robustly and transparently hide a little information in audio?

What are we missing?

People have tried this!

DNN-A, Pavlovic et al. (2022)

DNN-A, Pavlovic et al. (2022)

robust robust	DNN-A (Pavlovic et al. 2022)	EigenWatermark (Tai & Mansour 2019)
Sample rate	16kHz	44.1kHz
Required audio length	2s	1s
Robustness		
Signal-processing		
Neural audio codec		
Neural vocoder		
Neural denoiser		

robust robust	DNN-A (Pavlovic et al. 2022)	EigenWatermark (Tai & Mansour 2019)
Sample rate	16kHz	44.1kHz
Required audio length	2s	1s
Robustness		
Signal-processing	TPR @ 1% FPR = 0.00	
Neural audio codec		
Neural vocoder		
Neural denoiser		

robust robust	DNN-A (Pavlovic et al. 2022)	EigenWatermark (Tai & Mansour 2019)
Sample rate	16kHz	44.1kHz
Required audio length	2s	1s
Robustness		
Signal-processing	TPR @ 1% FPR = 0.00	
Neural audio codec	0.00	
Neural vocoder	0.00	
Neural denoiser	0.00	

robust robust	DNN-A (Pavlovic et al. 2022)	EigenWatermark (Tai & Mansour 2019)
Sample rate	16kHz	44.1kHz
Required audio length	2s	1s
Robustness		
Signal-processing	TPR @ 1% FPR = 0.00	0.73
Neural audio codec	0.00	0.39
Neural vocoder	0.00	0.01
Neural denoiser	0.00	1.00

Less More robust robust	DNN-A	Eigen	MaskMark
Sample rate	16kHz	44.1kHz	48kHz
Required audio length	2s	1s	1s
Robustness			
Signal-processing	TPR @ 1% FPR = 0.00	0.73	0.97
Neural audio codec	0.00	0.39	0.45
Neural vocoder	0.00	0.01	0.82
Neural denoiser	0.00	1.00	0.99

DNN-A, Pavlovic et al. (2022)

Architecture details

Architecture details

We hide the same watermark information in every frame

No explicit learning of an "unwatermarked" class!

Detector prediction for unwatermarked audio (essentially random)

			2220		100	2.5	ž
	i i					M3.	8 S
<i>i</i>						64%	
						<u>家</u> 者	0223
						派	10.5
						ſĽ	
							1.565
						-1400 -1412)	468-0
						Ϊġ	e-up-
							31.00062
					1		- Wit-
							Point.
		7.504 V 1.40					
						ii)	62.1
				2		ī (ģ	77.842

TERTEL PRODUCT CONTRACT STRATES STRATES AND ADDRESS AND ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS ADDRESS

~50% bit accuracy -

Detector prediction for unwatermarked audio (essentially random)

|--|--|--|--|--|--|--|--|--|

~100% bit accuracy

Detector prediction for audio with watermark 0

anna alaona kantokalan manatikanan kaarii marki ciina katat

Bit accuracy vs. known key vector, watermarked & un-watermarked audio

Bit accuracy vs. known key vector, watermarked & un-watermarked audio

100%

When targeting a low (1%) FPR, our approach outperforms recent signal-processing and neural-network watermarks!

robust robust	DNN-A	Eigen	Proposed
Sample rate	16kHz	44.1kHz	48kHz
Required audio length	2s	1s	1s
Robustness			
Signal-processing	TPR @ 1% FPR = 0.00	0.73	0.97
Neural audio codec	0.00	0.39	0.45
Neural vocoder	0.00	0.01	0.82
Neural denoiser	0.00	1.00	0.99

Neural vocoders can wipe out other watermarks while maintaining high audio quality!

Redundant frame-level embedding helps against pitch- and time-scale modification

Our approach preserves audio quality as rated by human listeners.

% Recordings Correctly Identified

Eigen, $\beta = 0.5$

0

25

50

78.2

61.4

63.9

75

Concurrent works:

- **Timbre Watermark** (Liu et al. 2024) uses a similar network design and also demonstrates robustness against neural network-based transformations
- **WavMark** (Chen et al. 2023) uses invertible neural networks to achieve a higher watermark capacity, but considers a narrower and "gentler" set of transformations
- AudioSeal (Roman et al. 2024) embeds a residual signal in the time domain and likewise considers a narrower set of transformations

Future directions:

- Improved robustness to neural network-based transformations
- Robustness to adversarial (optimization-based) attacks
- Increased information capacity

MaskMark: Robust Neural Watermarking for Real and Synthetic Speech

Patrick O'Reilly¹, Zeyu Jin², Jiaqi Su², Bryan Pardo¹

IEEE ICASSP 2024

- 1. Northwestern University
- 2. Adobe Research

https://oreillyp.github.io/maskmark/

MaskMark: Robust Neural Watermarking for Real and Synthetic Speech

(Listening examples)