
MaskMark: Robust Neural Watermarking for
Real and Synthetic Speech

Patrick O’Reilly1, Zeyu Jin2, Jiaqi Su2, Bryan Pardo1

IEEE ICASSP 2024
1. Northwestern University
2. Adobe Research

MaskMark: Robust Neural Watermarking for
Real and Synthetic Speech

(Listening examples)

In this work, we show how to hide a binary vector in
audio that can be recovered even when the audio has

been altered significantly.

TL;DR:

Let’s look at some examples.

Clean

This audio has no
hidden vector

Clean Watermarked

This audio has no
hidden vector

This audio has a
hidden vector

Clean Watermarked Normalized
Difference

This audio has no
hidden vector

This audio has a
hidden vector

Watermarked Embedded key vector

Watermarked Embedded key vector

Recovered key vector

(logits)

Recovered key vector

(quantized)

Simulated editing

Watermarked Embedded key vector

Recovered key vector

(logits)

Recovered key vector

(quantized)

Simulated editing

100% match

(random chance is 50%)

Watermarked Embedded key vector

Watermarked Embedded key vector

Recovered key vector

(logits)

Recovered key vector

(quantized)

HiFiGAN resynthesis

Watermarked Embedded key vector

Recovered key vector

(logits)

Recovered key vector

(quantized)

HiFiGAN resynthesis

99% match

Watermarked Embedded key vector

Watermarked Embedded key vector

Recovered key vector

(logits)

Recovered key vector

(quantized)

Simulated over-the-air

Watermarked Embedded key vector

Recovered key vector

(logits)

Recovered key vector

(quantized)

Simulated over-the-air

83% match

Why should we care about hiding
binary vectors in audio clips?

2016: WaveNet

Expertise + compute + a large single-speaker dataset + lots of time

=

2016: WaveNet

Expertise + compute + a large single-speaker dataset + lots of time

=

$0 + 1-10 min. audio + 5 min. editing

=

2023: Suno Bark

2023: Suno Bark

$0 + 1-10 min. audio + 5 min. editing

=

What can speech synthesis providers do?

We can hide a message in all the audio we generate

We can hide a message in all the audio we generate

We can check any audio for the message

We can hide a message in all the audio we generate

We can check any audio for the message

If we find the message, the audio was generated by our system

We can hide a message in all the audio we generate

We can check any audio for the message

If we find the message, the audio was generated by our system

“embed”

We can hide a message in all the audio we generate

We can check any audio for the message

If we find the message, the audio was generated by our system

“embed”

“watermark key”

We can hide a message in all the audio we generate

We can check any audio for the message

If we find the message, the audio was generated by our system

“embed”

“watermark key” [0, 1, 1, 0, 0, 1, …]

n bits

We can hide a message in all the audio we generate

We can check any audio for the message

If we find the message, the audio was generated by our system

“embed”

“watermark key” [0, 1, 1, 0, 0, 1, …]

n bits

We can hide a message in all the audio we generate

We can check any audio for the message

If we find the message, the audio was generated by our system

“embed”

“watermark key” [0, 1, 1, 0, 0, 1, …]

n bits

We can hide a message in all the audio we generate

We can check any audio for the message

If we find the message, the audio was generated by our system

“embed”

“watermark key”

“detect”

[0, 1, 1, 0, 0, 1, …]

n bits

Watermarking

Watermarking

Embed the watermark

Watermarking

Embed the watermark

watermark key

E

[0, 1, 1, 0, 0, 1, …]

Watermarking

Embed the watermark

watermark key

E

[0, 1, 1, 0, 0, 1, …]

Watermarking

Embed the watermark

Detect the watermark

watermark key

E

[0, 1, 1, 0, 0, 1, …]

Watermarking

Embed the watermark

Detect the watermark

watermark key

E

D

[0, 1, 1, 0, 0, 1, …]

Watermarking

Embed the watermark

Detect the watermark

watermark key

E

D score (big)

[0, 1, 1, 0, 0, 1, …]

Watermarking

Embed the watermark

Detect the watermark

watermark key

E

D score (small)

[0, 1, 1, 0, 0, 1, …]

Watermarking

Embed the watermark

Detect the watermark

watermark key

E

D score (small)

≠

[0, 1, 1, 0, 0, 1, …]

Desiderata

Desiderata

≈1.

Desiderata

≈1.

2. is big

Desiderata

≈1.

2. is big

3. is hard to remove from

Desiderata

≈1.

2. is big

3.

Perceptual transparency

watermark doesn’t ruin user experience

is hard to remove from

Desiderata

≈1.

2. is big

3.

Perceptual transparency

Capacity

watermark doesn’t ruin user experience

can hide info like user IDs in the watermark

is hard to remove from

Desiderata

≈1.

2. is big

3.

Perceptual transparency

Capacity

Robustness

watermark doesn’t ruin user experience

can hide info like user IDs in the watermark

watermark works under realistic conditions

is hard to remove from

Desiderata
Perceptual transparency

Capacity Robustness

Desiderata
Perceptual transparency

Capacity Robustness

Hard to remove, but low
information capacity

Desiderata
Perceptual transparency

Capacity Robustness

Hard to remove, but low
information capacity

Sounds horrible

Desiderata
Perceptual transparency

Capacity Robustness

Hard to remove, but low
information capacity

Sounds horrible

Carries lots of info, but
easy to remove

Balancing these is hard!

Robustness

watermark key

E D score (big)

Robustness

watermark key

E D score (small)C

channel

noise

reverb

compression

pitch shift

…

Robustness

D score (big)C

channel

noise

reverb

compression

pitch shift

…

We only need 1 bit to answer “fake or not?”

Desiderata
Perceptual transparency

Capacity Robustness

Robust & transparent

watermarks

How can we robustly and
transparently hide a little

information in audio?

“EigenWatermark” (Tai & Mansour 2019)

Clean

“EigenWatermark” (Tai & Mansour 2019)

Clean Watermarked

“EigenWatermark” (Tai & Mansour 2019)

Clean Watermarked Normalized
Difference

Watermarked

Completely breaks the watermark!

“EigenWatermark” (Tai & Mansour 2019)

Watermarked Speed up 2%

Completely breaks the watermark!

“EigenWatermark” (Tai & Mansour 2019)

How can we robustly and
transparently hide a little

information in audio?

Let’s make and 	 neural networksE D

[0, 1, 1, 0, 0, 1, …]

Let’s make and 	 neural networksE D

E

[0, 1, 1, 0, 0, 1, …]

Let’s make and 	 neural networksE D

E

[0, 1, 1, 0, 0, 1, …]

[0, 1, 1, 0, 0, 1, …]

D

Let’s make and 	 neural networksE D

E

[0, 1, 1, 0, 0, 1, …]

D

[-2.7, 10.1, 3.5, -0.1, -20.2, 3.6, …]

[0, 1, 1, 0, 0, 1, …]

> 0.5

Let’s make and 	 neural networksE D

E

[0, 1, 1, 0, 0, 1, …]

[-2.7, 10.1, 3.5, -0.1, -20.2, 3.6, …]

cross-entropy loss

[0, 1, 1, 0, 0, 1, …]

> 0.5

Let’s make and 	 neural networks

D

E D

E

[0, 1, 1, 0, 0, 1, …]

[-2.7, 10.1, 3.5, -0.1, -20.2, 3.6, …]

cross-entropy loss

STFT loss

[0, 1, 1, 0, 0, 1, …]

> 0.5

Let’s make and 	 neural networks

D

E D

E

[0, 1, 1, 0, 0, 1, …]

[-2.7, 10.1, 3.5, -0.1, -20.2, 3.6, …]

cross-entropy loss

STFT loss

[0, 1, 1, 0, 0, 1, …]

> 0.5

Let’s make and 	 neural networks

D

E D

E

[0, 1, 1, 0, 0, 1, …]

[-2.7, 10.1, 3.5, -0.1, -20.2, 3.6, …]

cross-entropy loss

STFT loss

[0, 1, 1, 0, 0, 1, …]

> 0.5

Let’s make and 	 neural networks

D

E D

E

What are we missing?

[0, 1, 1, 0, 0, 1, …]

[-2.7, 10.1, 3.5, -0.1, -20.2, 3.6, …]

cross-entropy loss

STFT loss

[0, 1, 1, 0, 0, 1, …]

> 0.5

Let’s make and 	 neural networks

D

E D

E

[0, 1, 1, 0, 0, 1, …]

[-2.7, 10.1, 3.5, -0.1, -20.2, 3.6, …]

cross-entropy loss

STFT loss

[0, 1, 1, 0, 0, 1, …]

> 0.5

C

channel

Let’s make and 	 neural networks

D

E D

E

People have tried this!

[0, 1, 1, 0, 0, 1, …]

[-2.7, 10.1, 3.5, -0.1, -20.2, 3.6, …]

cross-entropy loss

STFT loss

[0, 1, 1, 0, 0, 1, …]

> 0.5

C

channel

DE

DNN-A, Pavlovic et al. (2022)

DNN-A, Pavlovic et al. (2022)

[0, 1, 1, 0, 0, 1, …]

[-2.7, 10.1, 3.5, -0.1, -20.2, 3.6, …]

cross-entropy loss

RI-STFT loss

[0, 1, 1, 0, 0, 1, …]

> 0.5

C

channel

(RI-STFT 2D U-Net) (RI-STFT 2D CNN)

Train on 6 key vectors (Noise, dropout, LPF)

DE

DNN-A

(Pavlovic et al. 2022)

EigenWatermark

(Tai & Mansour 2019)

Sample rate

Required audio length

Robustness

Signal-processing

16kHz 44.1kHz

2s 1s

Neural audio codec

Neural vocoder

Neural denoiser

0.00

0.73

0.39

0.01

1.00

More

robust

Less

robust

DNN-A

(Pavlovic et al. 2022)

EigenWatermark

(Tai & Mansour 2019)

Sample rate

Required audio length

Robustness

Signal-processing

16kHz 44.1kHz

2s 1s

More

robust

Less

robust

Neural audio codec

Neural vocoder

Neural denoiser

TPR @ 1% FPR = 0.00

DNN-A

(Pavlovic et al. 2022)

EigenWatermark

(Tai & Mansour 2019)

Sample rate

Required audio length

Robustness

Signal-processing

16kHz 44.1kHz

2s 1s

More

robust

Less

robust

Neural audio codec

Neural vocoder

Neural denoiser

TPR @ 1% FPR = 0.00

0.00

0.00

0.00

DNN-A

(Pavlovic et al. 2022)

EigenWatermark

(Tai & Mansour 2019)

Sample rate

Required audio length

Robustness

Signal-processing

16kHz 44.1kHz

2s 1s

More

robust

Less

robust

Neural audio codec

Neural vocoder

Neural denoiser

TPR @ 1% FPR = 0.00

0.00

0.00

0.00

0.73

0.39

0.01

1.00

DNN-A Eigen

Sample rate

Required audio length

Robustness

16kHz 44.1kHz

2s 1s

More

robust

Less

robust MaskMark

48kHz

1s

Signal-processing

Neural audio codec

Neural vocoder

Neural denoiser

TPR @ 1% FPR = 0.00

0.00

0.00

0.00

0.73

0.39

0.01

1.00

0.97

0.45

0.82

0.99

DNN-A, Pavlovic et al. (2022)

[0, 1, 1, 0, 0, 1, …]

[-2.7, 10.1, 3.5, -0.1, -20.2, 3.6, …]

cross-entropy loss

RI-STFT loss

[0, 1, 1, 0, 0, 1, …]

> 0.5

C

channel

(RI-STFT 2D U-Net) (RI-STFT 2D CNN)

Train on 6 key vectors (Noise, dropout, LPF)

DE

MaskMark

[0, 1, 1, 0, 0, 1, …]

[-2.7, 10.1, 3.5, -0.1, -20.2, 3.6, …]

cross-entropy loss

MR-STFT loss

[0, 1, 1, 0, 0, 1, …]

> 0.5

C

channel

(STFT Conformer) (STFT 2D CNN)

(Noise, dropout, LPF, HPF, pitch shift,
speed, reverb, spectral gate)

Encodec-style gradient balancing

Encodec-style gradient balancing

Train on 64 key vectors

DE

Architecture details

Architecture details

We hide the same watermark
information in every frame

No explicit learning of an “un-
watermarked” class!

64 learned watermarks

64 learned watermarks

Detector prediction for
unwatermarked audio

(essentially random)

64 learned watermarks

Detector prediction for
unwatermarked audio

(essentially random)

~50% bit accuracy

64 learned watermarks

Detector prediction for
audio with watermark 0

~100% bit accuracy

Bit accuracy vs. known key vector, watermarked &
un-watermarked audio

Bit accuracy

C
ou

nt

Bit accuracy vs. known key vector, watermarked &
un-watermarked audio

Bit accuracy

C
ou

nt

~50% bit accuracy for
unwatermarked

~100% bit accuracy
for watermarked

This lets us distinguish between watermarked
and unwatermarked audio using bit accuracy

This lets us distinguish between watermarked
and unwatermarked audio using bit accuracy

0% 100%

This lets us distinguish between watermarked
and unwatermarked audio using bit accuracy

0% 100%

𝜏

This lets us distinguish between watermarked
and unwatermarked audio using bit accuracy

0% 100%

𝜏

predict “unwatermarked” predict “watermarked”

0% 100%

𝜏

predict “unwatermarked” predict “watermarked”

can calibrate experimentally to
hit desired false-positive rate

When targeting a low (1%) FPR, our approach
outperforms recent signal-processing and

neural-network watermarks!

Sample rate

Required audio length

Robustness

16kHz 44.1kHz

2s 1s

More

robust

Less

robust Proposed

48kHz

1s

Signal-processing

Neural audio codec

Neural vocoder

Neural denoiser

TPR @ 1% FPR = 0.00

0.00

0.00

0.00

0.73

0.39

0.01

1.00

0.97

0.45

0.82

0.99

DNN-A Eigen

Neural vocoders can wipe out other watermarks while maintaining high audio quality!

Neural vocoders can wipe out other watermarks while maintaining high audio quality!

Redundant frame-level embedding helps against pitch- and time-scale modification

Our approach preserves audio quality as
rated by human listeners.

● Timbre Watermark (Liu et al. 2024) uses a similar network design and
also demonstrates robustness against neural network-based
transformations

● WavMark (Chen et al. 2023) uses invertible neural networks to achieve
a higher watermark capacity, but considers a narrower and “gentler”
set of transformations

● AudioSeal (Roman et al. 2024) embeds a residual signal in the time
domain and likewise considers a narrower set of transformations

Concurrent works:

● Improved robustness to neural network-based transformations

● Robustness to adversarial (optimization-based) attacks

● Increased information capacity

Future directions:

MaskMark: Robust Neural Watermarking for
Real and Synthetic Speech

Patrick O’Reilly1, Zeyu Jin2, Jiaqi Su2, Bryan Pardo1

IEEE ICASSP 2024
1. Northwestern University
2. Adobe Research

https://oreillyp.github.io/maskmark/

https://oreillyp.github.io/maskmark/

MaskMark: Robust Neural Watermarking for
Real and Synthetic Speech

(Listening examples)

