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ABSTRACT

In recent work [1], we developed a distributed stochastic multi-arm
contextual bandit algorithm to learn optimal actions when the con-
texts are unknown, and M agents work collaboratively under the
coordination of a central server to minimize the total regret. In our
model, the agents observe only the context distribution and the ex-
act context is unknown to the agents. Such a situation arises, for
instance, when the context itself is a noisy measurement or based
on a prediction mechanism. By performing a feature vector transfor-
mation and by leveraging the UCB algorithm, we proposed a UCB
algorithm for stochastic bandits with context distribution. In this pa-
per, we test our algorithm on a real-world dataset and investigate the
interactions between drugs and proteins. For this we perform a data
pre-processing step to fit the model and we evaluated the performance
of our algorithm for the drug-protein interaction study as compared
to other benchmark algorithm. Furthermore, we present the results of
biological experiments and draw inferences from our findings.

1. INTRODUCTION

Decision-making under uncertainty is an ubiquitous challenge span-
ning various domains, including control and robotics [2], clinical
trials [3, 4, 5], communications [6], and ecology [7]. Learning algo-
rithms have been developed to discern effective policies and strategies
for optimal decision-making. Contextual bandits represent one such
framework, capturing the sequential decision-making process by
leveraging side information, referred to as context [8]. In the typical
contextual bandit model, a learner engages with the environment over
multiple rounds. During each round, the environment provides a con-
text to the learner, who then selects an action. Following this choice,
the learner receives a reward associated with the selected action, with
the overarching objective of maximizing cumulative rewards.

While the majority of prior research on Multi-Armed Bandit
(MAB) has concentrated on single-agent strategies, the growing sig-
nificance of distributed learning has spurred exploration into MAB
problems involving multiple agents [9]. For instance, in many appli-
cations using contextual bandit algorithms, including recommender
systems, clinical trials, and control and robotics, collaborative and
concurrent learning is desired to expedite the learning process [10, 11].
Additionally, a federated learning framework is often sought after
where the agents can collaborate and jointly learn from the data
available at multiple agents without sharing the raw data, rather only
sharing the estimates thereby maintaining data privacy. This is par-
ticularly important in computational biology, where data privacy is a
major concern. Another key challenge is that the Contextual Bandit
(CB) models considered in the literature typically assume that the
contexts are known. However, in many applications there are sce-
narios where the contexts are noisy or are forecasting measurements

(e.g., prediction of physicochemical properties of a drug, weather pre-
diction, or stock market prediction), the exact contexts are unknown,
and a distribution on the context is only available [12]. In such cases,
the exact context is a sample from this distribution, which is unknown
to the learner, and the standard algorithms for contextual bandits
are not suitable. In our recent work [1], we studied the distributed
stochastic contextual bandit with unknown context and proposed a
communication efficient Upper Confidence Bound (UCB) algorithm.
The proposed algorithm in [1] achieves an O(d

√
MT log2 T ) high

probability regret bound, where M,d,T denote the number agents,
dimension of feature vector, and number of rounds, when only the
context distribution is available and the exact context is unknown.

One particular application where distributed learning under un-
known (noisy) data has been encountered is computational and ex-
perimental structural biology. In computational and experimental
structural biology setups our observations are almost always con-
strained by our study-objective. In other words, if we seek to measure
the binding of a protein with another molecule, we are unlikely
to learn any other general property of the protein or the molecule
even though that protein or binder molecule will have multiple other
chemical properties and functions. One must train focused machine
learning models to look at a specific function with data collected
on that particular observable. While a gamut of general-purpose
latent protein representations of proteins and small molecules have
been put forward in the last few years with the advent of language,
and physics-informed models (i.e., AlphaFold2 [13], RoseTTAFold
[14], OmegaFold [15], AminoBert [16], ProtT5 [17], ProtBert [18],
ESM2 [19], and ChemBERT [20]) they are not necessarily guided to
understand how a certain drug-protein pair would interact.
Contributions: In this work, we utilize specific binding data from
a set of human proteins against a library of drugs (made publicly
available by the Harvard Medical School LINCS Center) such that
the latent representations of these proteins would likely, selectively
reflect how these proteins bind to the said drugs and not any other
unrelated biochemical properties. We modeled the protein-drug in-
teraction prediction problem as a bandit learning, where the feature
vectors of the drug and the available proteins are extracted from the
dataset and then we constructed the latent feature vector correspond-
ing to each drug-protein pair. The goal of the algorithm is to learn
the binding relationship between a protein with another molecule and
thereby learn to select a protein for a given drug that correspond to
maximum binding activity. We implemented and tested the bandit
learning algorithm in [1] for the single agent case and for the dis-
tributed case (when data is distributed among different labs and the
labs collaborate to learn the protein-drug interaction concurrently
in a federated manner without sharing the raw data). Subsequently,
we thought that would be worthwhile to assess whether the latent
representations conform to any structural parameters that define this



drug protein interactions so our d-dimensional feature vector repre-
sentation of each protein binding to each drug molecule would likely
lead us to capture internal structural cues true to each drug-protein
pair. One possible intuitive outcome of this experiment would be
to check if the d-dimensional vector encoding a protein-drug pair
would be able to grasp the top-d possible, docking conformations
of the drug against while interacting with its partner protein. In our
experiments, we noticed that a reasonably high degree of correlation
can be obtained between the normalized latent space representation
of the drug-protein pair and the normalized docking energy scores
thereby validating the effectiveness of the bandit approach.

1.1. Problem Setting and Notations

Notations: The norm of a vector z ∈ Rd with respect to a matrix
V ∈ Rd×d is defined as ‖z‖V :=

√
z>V z and |z| for a vector z denotes

element-wise absolute values. Further, > denotes matrix or vector
transpose, 〈·, ·〉 denotes inner product, and [N] := {1,2, . . . ,N}, for
an integer N.
Problem Setting: Distributed LBs with Unknown Contexts: In
this section, we first specify the standard LB problem and then explain
the distributed stochastic bandit setting. Let X be the action set, C
be the context set, and the environment is defined by a fixed and
unknown reward function y : X ×C→ R. In LBs, at any time t ∈N,
the agent observes a context ct ∈ C and chooses an action xt ∈ X .
Each context-action pair (x,c), x ∈ X and c ∈ C, is associated with
a feature vector φx,c ∈ Rd , i.e., φxt ,ct = φ(xt ,ct). Upon selection of
an action xt , the agent observes a reward yt ∈ R defined by yt :=
〈θ?,φxt ,ct 〉+ηt , where θ? ∈ Rd is the unknown reward parameter,
〈θ?,φxt ,ct 〉= r(xt ,ct) is the expected reward for action xt at time t, i.e.,
r(xt ,ct) = E[yt ], and ηt is σ−subGaussian, additive noise. The goal
is to choose optimal actions x?t for all t ∈ T such that the cumulative
reward, ∑

T
t=1 yt , is maximized. This is equivalent to minimizing the

cumulative (pseudo)-regret denoted as

RT =
T

∑
t=1
〈θ?,φ t

x?t ,ct
〉−

T

∑
t=1
〈θ?,φ t

xt ,ct
〉. (1)

Here x?t is the optimal/best action for context ct and xt is the action
chosen by the agent for context ct .

In our earlier work [1], we considered distributed stochastic LBs
with context distribution and unknown contexts. The communication
network in [1] consisted of a server and M agents, and the agents
can communicate with the server by sending and receiving packets.
The context at time t, ct is unobservable rather only a distribution of
the context denoted as µt is observed by the agents. At round t, the
environment chooses a distribution µt ∈ P(C) over the context set
and samples a context realization ct ∼ µt . The agents observe only µt
and not ct and each agent selects an action, say action chosen by agent
i is xt,i, and receive reward yt,i, where yt,i = 〈θ?,φxt,i,ct 〉+ηt,i. Our
aim is to learn an optimal mapping/policy P(C)→ X of contexts to
actions such that the cumulative reward, ∑

M
i=1 ∑

T
t=1 yt,i is maximized.

Formally, our aim is to minimize the cumulative regret

R(T ) =
M

∑
i=1

T

∑
t=1
〈θ?,φx?t,i,ct 〉−

M

∑
i=1

T

∑
t=1
〈θ?,φxt,i,ct 〉. (2)

Here, x?t = argmaxx∈X Ec∼µt [rx,c] is the best action provided we
know µt , but not ct , and T is the total number of rounds. Such a setting
is particularly relevant in scenarios where contexts are noisy and the
agents (labs) have limited amount of data and wish to collaborate with
other agents (labs) in a federated manner to learn the global objective.
Our goal is to develop a distributed multi-armed bandit algorithm

with the least possible communication cost to solve this problem. We
define the communication cost of a protocol as the number of integers
or real numbers communicated between the server and the agents
[11]. We make the standard assumptions on the additive noise ηt and
the unknown parameter θ? [12] as given below.
Assumptions. Each element ηt of the noise sequence {ηt}∞

t=1 is
conditionally σ−subGaussian. There exist constants S,D > 0 such
that ‖θ?‖2 6 S, ‖φx,ct‖2 6 D, and φ>x,ct

θ? ∈ [0,1], for all t, all x ∈ X .

1.2. Related Work

Bandit algorithms are well studied in the literature, for a survey
see [8] and [21]. The bandit setting closely related to this paper
is stochastic contextual bandits, where the learner selects actions
based on observed contexts, aiming to learn an optimal mapping
from contexts to actions. Linear contextual bandits, a popular variant,
has been extensively studied [8] and [21]. and strong theoretical
guarantees are established using different solution approaches. In the
linear contextual bandit setting, the context is known in each round,
making it a special case of the bandit setting addressed in this paper,
with µt representing a Dirac delta distribution δct for all t ∈ T .

Linear contextual bandits with context uncertainty have been
explored in [12, 22, 23]. [22] considered perturbed context scenarios,
aiming to compete with an optimal policy using unperturbed feature
vectors. Reference [12] tackled contexts that are unobservable, with
only a distribution over contexts available, seeking to select the best
action based on this distribution. Our prior work [23] considered a
single-agent conservative contextual MAB problem where contexts
were unknown, and performance constraints were imposed.

In this paper we extend [12] to address a multi-agent stochas-
tic contextual MAB problem with unknown context. We transform
this into a distributed linear contextual bandit scenario with action-
dependent noise, referred to as heteroscedastic bandits, as explored
in [24, 25]. Notably, the distinguishing factor between prior het-
eroscedastic bandit works and our approach is our focus on a multi-
agent distributed MAB setting, rather than a single-agent scenario.

Recently, MAB models involving multiple players have garnered
increased attention [26]. Our model shares similarities with the dis-
tributed bandits examined in [11], where agents encounter the same
bandit model and communicate with a central server for collaborative
and concurrent learning. Reference [11] considered setting with fixed
and time-varying action sets. The time-varying action set setting
aligns with our approach, but a key distinction is that, in [11] , con-
texts are known to the agents, whereas our contexts remain unknown.
A related problem variant is addressed in [27], where agents observe
the actual context after choosing actions, introducing a delay. For
this case, we presented a modified algorithm in [27] utilizing this
additional information to achieve a tighter regret bound.

2. DISTRIBUTED UCB ALGORITHM FOR LINEAR
BANDITS WITH UNKNOWN CONTEXTS

In this section, we present the algorithm for solving the distributed
stochastic contextual bandit when the actual context is not observ-
able rather a distribution is only available (e.g., weather predic-
tion/forecast, stock market prediction, prediction of physicochemical
properties of a drug). Our algorithm is built on the works of [11, 12].
The pseudocode of our algorithm is presented in Algorithm 1.

Given the distribution µt , we first construct the feature vectors
Ψt = {ψx,µt : x ∈ X }, where {ψx,µt := Ec∼µt [φx,c]} is the expected
feature vector of action x under µt . We use Ψt as the feature context
set at time t. Our algorithm is based on the optimism in the face of
uncertainty principle, where at each time t ∈ [T ], each agent i ∈ [M]



maintains a confidence set Bt,i⊆Rd that contains the unknown param-
eter vector θ? with high probability. Each agent then chooses an op-
timistic estimate θ̃t,i = argmaxθ∈Bt,i (maxx∈X ψ>x,µt

θ) and chooses
an action xt,i = argmaxx∈X ψ>x,µt

θ̃t,i. Equivalently the agent chooses
the pair (xt,i, θ̃t,i) ∈ arg max

(x,θ)∈X×Bt,i

ψ>x,µt
θ which jointly maximizes

the reward. The agents now play their respective optimistic actions,
xt,i’s, and receive rewards yt,i’s and utilize the reward observations to
update their individual confidence set. We note that it is not imme-
diately clear how this is feasible since yt,i is a noisy observation of
φ>xt,i,ct

θ? and the algorithm expects the reward ψ>xt,i,µt
θ?. To address

this, we construct a feature set Ψt in such a way that yt,i is an unbiased
observation for the action choice ψt , similar to the technique in [12]
for single agent bandits. We denote ∑t ψxt,i,µt ψ

>
xt,i,µt

and ∑t ψxt,i,µt yt,i

for each agent i ∈ [M] as Wt,i and Ut,i, respectively. We construct the
confidence set Bt,i using Wt,i and Ut,i as

Bt,i =
{

θ ∈ Rd : ‖θ̂t,i−θ‖V t,i
6 βt,i

}
, (3)

where βt,i = βt,i(σ ,δ ) = σ

√
2log

(det(V t,i)
1/2det(λ I)−1/2

δ

)
+

λ 1/2S, V t,i = λ I +Wt,i, θ̂t,i =V−1
t,i Ut,i.

Without synchronization, agents in our protocol execute Algo-
rithm 1 in [12] separately. In that case the regret will be scaled by
a factor M. During synchronization agents share all newly acquired
samples with each other. The synchronizations are done at specific
time instants. We refer to the timesteps between the two synchroniza-
tions as epochs. The epochs are designed based on the observation in
[28] that the change in the determinant of V t is a good indicator of
learning progress. Based on this observation, we only synchronize
when agent i finds that the log-determinant of V t,i has changed more
than a constant factor since the last synchronization, and this reduces
the communication cost of the algorithm. The pseudocode of our
algorithm is described below. The regret and communication bounds
for Algorithm 1 are proved in [1].

3. EXPERIMENTAL ANALYSIS AND RESULTS

3.1. Bandit Simulations
We first describe the data pre-processing process to construct the
rating matrix R from the data. The dataset consists of different drugs,
proteins, and their corresponding experimental values. In the rating
matrix R, drugs are the rows, proteins are the columns, and the exper-
iment value of the ith molecule and jth protein is the (i, j)-th entry of
the rating matrix R. In instances where there were multiple experimen-
tal values for the same combination of molecule-protein, we chose
the lowest value and removed the redundant cases while constructing
R. Also in cases with missing experimental values, we set the experi-
mental value as 10001. Our dataset includes 207 molecules and 395
proteins t and the rating matrix R = [rx,c] ∈ R207×395. Subsequently,
we performed a decomposition of R. We then performed the Non-
negative Matrix Factorization (NMF) decomposition to decompose R
into product of two non-negative matrices W ∈R207×`,H ∈R`×395.In
our simulations, we set ` = 3,4,6. In the decomposition, each row
of W , {W>j } j∈[207], represents a context and each column of H,
{Hk}k∈[395], represents an action. The feature vector for a given
context W j and action Hk is given by the vectorized form of the ma-
trix W jH>k . Hence the feature vector φ(x,c) is of dimension `2. The
reward r(xt ,ct) is bounded above by 1 by normalizing the entries,
and the observation noise ηi is set as Gaussian with zero mean and
standard deviation 10−3. The plots are shown in Figure 1. Figure 1a

Algorithm 1 Distributed UCB for LBs with hidden contexts

1: Initialization: B = ( T logMT
dM ), λ = 1, Wsyn = 0,Usyn = 0,Wt,i =

0,Ut,i = 0, tlast = 0,Vlast = λ I, for all i = 1,2, . . . ,M
2: for t = 1,2, . . . ,T do
3: Nature chooses µt ∈ P(C) and learner observes µt
4: Set Ψt = {ψx,µt : x ∈ X } where {ψx,µt := Ec∼µt [φx,c]}
5: for Agent i = 1,2, . . . ,M, do
6: V t,i = λ I +Wsyn +Wt,i, θ̂t,i =V−1

t,i (Usyn +Ut,i)

7: Construct the confidence ellipsoid Bt,i using V t,i, θ̂t,i
8: (xt,i, θ̃t,i) = argmax(x,θ)∈X×Bt,i

〈
ψx,µt ,θ

〉
9: Play xt,i and get the reward yt,i

10: Update Wt,i =Wt,i +ψxt,i,µt ψ
>
xt,i,µt

,Ut,i =Ut,i +ψxt,i,µt yt,i
11: Vt,i = λ I +Wsyn +Wt,i
12: if log(det(Vt,i)/det(Vlast)) · (t− tlast)> B then
13: Send a synchronization signal to server to start a com-

munication round
14: end if
15: Synchronization round:
16: if a communication round is started then
17: All agents i ∈ [M] send Wt,i and Ut,i to server
18: Server computes Wsyn = Wsyn + ∑

M
i=1 Wt,i,Usyn =

Usyn +∑
M
i=1 Ut,i

19: All agents receive Wsyn,Usyn from the server
20: Set Wt,i =Ut,i = 0, tlast = t, for all i, Vlast = λ I+Wsyn
21: end if
22: end for
23: end for

presents the regret vs. iteration count (round) plot for `= 3,4,6 (i.e.,
d = 9,16,36, respectively) for the single-agent case (i.e., a single
agent learning) and Figure 1b presents the distributed setting after
distributing the data among 3 agents. For the distributed case, we set
`= 3 (i.e., d = 9) and T = 30,000.

3.2. Biological Experiments

To facilitate this work, we took the 10-dimensional latent representa-
tions of each protein from the previous step. For example, we chose
to demonstrate one case where the BRAF protein interacts with a
RAF265 drug (Figure 2). We first normalized the 10-dimensional
latent vector of BRAF-RAF265 binding and hypothesized it to repre-
sent the best binding energy conformations of the drug-protein pair.
In parallel, we also performed molecular docking experiments of that
same drug with the affiliated protein BRAF (using AutoDock4 pro-
gram [29]). We gleaned the docking conformations with the objective
to identify which normalized binding energies from these conforma-
tions are representative of the trend of numbers in the normalized
10-dimensional latent representation of this protein-drug pair. We thus
correlated the select ten docking poses which maximized correlation
with the 10-dimensional vector of normalized latent representations.
We finally validated the rationality of these select drug-binding poses
by checking how many of these are actually bound to the known
drug-binding pocket of the protein (BRAF, in this case). To facil-
itate this, we inspected the experimentally determined structure of
BRAF co-crystallized with a known inhibitor molecule (CNS292)
and reported as PDB accession id: 3Q4C [30]. The location on BRAF
where CNS292 is bound represents the expected site of drug binding
activity on BRAF. We superimposed our 10 chosen RAF265 docking
conformations on BRAF with 3Q4C to check how many of these
were at the inhibitor-binding site.



(a) Single agent setting: M = 1 and dimension d = 9,16,36 (b) Multi-agent setting: M = 3 and dimension d = 9

Fig. 1: The plot showing cumulative regret R(T ) with respect to iteration number. We ran 60,000 iterations for Fig. 1a and 30,000 iterations for Fig. 1b.

Fig. 2: Normalized drug binding scores from the top AutoDock4-predicted RAF265 drug binding poses with B-Raf proto-oncogene serine/ threonine kinase
(abbreviated as BRAF) seem to correlate reasonably well (R2 > 0.76) with the 10-dimensional normalized latent encoding derived from this drug-protein binding
data. Individual data points are marked (in gray) with the raw AutoDock4 binding scores (in computational binding units) between BRAF and RAF265. On the
right, we show with one representative pose (out of the 10 poses) of RAF265 that the drug bound to the known native drug-binding pocket (as known from
experimental BRAF inhibitor binding; co-crystallized PDB 3Q4C).

We observe that a reasonably high degree of correlation (R2
>0.76) can be obtained between the normalized latent space represen-
tation of the drug-protein pair (BRAF and RAF265) and the normal-
ized docking energy scores obtained from the ten chosen RAF265
conformations. We further assessed the utility of this correlation by
explicitly checking the location of drug binding per conformational
pose (recovered from the docking program - AutoDock4). We notice
that all these conformations of the RAF265 drug were indeed within
the reported pocket of drug activity where the CNS292 inhibitor
molecule binds (see Figure 2). While this just a spot check, we be-
lieve that a larger campaign of such docking experiments launched
against the whole data set would unravel more and more systematic
information to map how these latent space dimensions of protein
drug finding empirically encodes to drug binding poses at the correct
drug-binding location on these proteins.

4. DISCUSSION AND FUTURE WORK

In this paper, we explored the use of bandit learning to study protein-
drug interaction. We developed a distributed and federated bandit
learning algorithm [1] and showed that it can learn to choose opti-
mal proteins for given drugs to maximize the binding activity. We

also performed biological experiments to draw inferences about the
feasibility of the bandit learning approach.

While this is an initial analysis for the proof-of-concept of this
novel methodology, we in future hope to train separate neural archi-
tectures (say, a simple fully connected perceptron) where we would
like to create an implicit map between the feature vectors of several
hundred thousand of drug-protein combinations. As a start, we will
follow up with the dataset which have been used in this study itself,
to calculate the structural and biological fidelity of this latent space
vector and refine it (if needed). Such efforts would progress the un-
derstanding of cryptic binding interactions between different drugs
and different proteins and would become a cornerstone for future
generative-AI models where one would be able to input a protein
molecule’s amino acid sequence and the chemical identifier of a drug
and internally by predicting the protein structure, generating the la-
tent space vector to predict the probability of a given protein to be
affected when an individual (or a living organism) is administered a
certain drug. This is consequential in context of disease intervention
(where one intends to target a specific protein with a given drug) and
side-effect monitoring (where one intends to minimize binding of a
drug to any unwanted protein).
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