

DISTRIBUTED STOCHASTIC CONTEXTUAL BANDITS FOR PROTEIN DRUG INTERACTION

Jiabin Lin¹, Karuna Anna Sajeevan^{2,3}, Bibek Acharya², Shana Moothedath¹, Ratul Chowdhury^{2,3}

1. Department of Electrical and Computer Engineering 2. Department of Chemical and Biological Engineering 3. The Center for Biorenewable Chemicals Iowa State University, Ames, IA, USA

PROBLEM FORMULATION	PROPOSED APPROACH	EXPERIMENTAL RESULTS
Contextual Bandit	Distributed UCB for LBs with hidden contexts	17500 d=9, M=3 15000
The learner and the environment interact in	\[\] \] \] \] \] \] \] \] \] \] \] \] \]	() 12500- 10000-
several rounds. In each round <i>t</i> ,	Agent1 Agent2	2500- 2500-

- the leaner **observes a context** c_t from the environment
- the learner **chooses an action** $x_t \in A$, where A is action set
- the learner **receives a reward** y_t from the environment
- The goal of the learner is to **maximize the** cumulative reward $\sum_{t=1}^{T} y_t$

In this work, we consider

Key step of our Approach

- 1) Each agent observes context distribution
 - and construct feature vector set
- Each agent chooses an optimistic 2)
 - estimate and action pair based on UCB

25000

Cumulative regret is sublinear and gradually converges with increasing iterations.

Cumulative regret decreases as the dimension decreases.

- **Distributed** Stochastic Contextual Bandit
- Each agent cannot observe the context c_t rather only a **context distribution** μ_t
- The fixed and unknown stochastic linear reward function $y: A \times C \rightarrow \mathbb{R}$
 - $y_{t,i} \coloneqq \langle \theta^*, \phi_{x_{t,i},c_t} \rangle + \eta_{t,i}$
 - $\phi_{x_{t,i},c_t} \in \mathbb{R}^d$ is a feature vector associated with context-action pair $(x_{t,i}, c_t)$
 - $\theta^* \in \mathbb{R}^d$ is the unknown reward

parameter

(Upper Confidence Bound) approach

- Each agent plays their respective 3)
 - optimistic actions and receive reward
- Each agent uses the feature vector and 4) reward to update their parameter
- 5) If the parameter change is significant,
 - All agents send their local estimates to central server
 - Central server computes the global parameters
 - Central server broadcasts the global parameters to each agents

The normalized docking energy scores and the normalized latent space representation of the

drug-protein pair are highly correlated.

A representative of RAF265 that the drug bound

to the known native drug-blinding pocket.

CONCLUSIONS

Utilized specific protein-drug binding data to research the interaction properties through latent representations.

• $\eta_{t,t}$ is σ -subGaussian noise

M agents jointly minimize cumulative regret

 $\mathcal{R}(T) = \sum_{i=1}^{N} \sum_{i=1}^{N} \left(\left\langle \theta^*, \phi_{x_{t,i}^*, c_t} \right\rangle - \left\langle \theta^*, \phi_{x_{t,i}, c_t} \right\rangle \right)$

The protein-drug interaction prediction

problem was modeled using bandit learning

EXPERIMENTAL RESULTS

We generate latent representations using

specific binding data from the **Harvard**

Medical School LINCS Center

Using NMF to decompose the data into

context and action matrices

Taking the 10-dimensional latent ullet

representing of each protein

Modeled the protein-drug interaction

prediction as a bandit learning, aiming to

learn binding relationships and select

proteins for a given drug.

Evaluated if the latent representations

conform to any structural parameters

that define this drug protein interactions