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In this work, we examine the extent to which the precise attack algorithm used 
influences the adversarial examples it generates.  To this end, we build a 
pipeline (REDRL) for classifying adversarial examples by the associated attack 
algorithm, finding that in fact different attacks generate unique examples.

Our contributions can be summarized as follows: 

• We demonstrate that the perturbations generated by each attack 
algorithm have distinctive signatures, facilitating the identification of 
the attack type.

• We propose an adversarial perturbation recovery framework, Reverse 
Engineering of Deceptions via Residual Learning (REDRL), to 
estimate the adversarial perturbations and to detect attack algorithm.

Experimental Setup:

• In this study, we consider the CIFAR-10 and Tiny ImageNet datasets and 
the following candidate attacks: PGD, DeepFool, CWL2 , CWL∞ , and 
Adversarial Patch. We use ResNet-50 , ResNeXt-50, DenseNet-121, and 
VGG-19 for image classifier Φ. For the attack classification network Ψ, we 
employ a ResNet-18 with label smoothing.

Introduction ExperimentsMethod (REDRL)

Adversarial samples (first row) and their respective perturbations (second row).

• Image Reconstruction:

 A reconstructed image 𝐼! should lie close in pixel space to the clean image 𝐼" 
that was used to generate the adversarial example:

• Feature Reconstruction:

To encourage semantic similarity, the reconstructed image 𝐼! should also 
lie close to the clean image 𝐼" in feature space:

• Image Classification:

A pretrained image classifier Φ should yield similar classification scores 
on the reconstructed image 𝐼! and the clean image 𝐼". This objective which 
can be framed in the context of Knowledge Distillation:

• Residual Recognition:

As an estimate of the adversarial perturbation, the residual image 
𝐼# = 𝐼$%& − 𝐼! along with the adversarial image 𝐼$%&	is fed to the attack 
classification network Ψ	to be classified into one of the adversarial attack 
algorithm classes.

• End-To-End Training:

The four stages of REDRL are trained simultaneously in an end-to-end 
fashion for the purpose of adversarial perturbation estimation and attack 
algorithm recognition:

Ablation Study:
 

A. We ignore FR and IC stages and only optimize network 𝐺 for 𝐿!(𝐺) and 𝐿"#(𝐺)
B. We add 𝐿$  so that network 𝐺 is optimized on the 𝐿! 𝐺 , 𝐿$(𝐺), and 𝐿"#(𝐺) objectives.
C. We investigate the effect of image classification on the overall performance. Therefore, we 

optimize 𝐺 on 𝐿! 𝐺 , 𝐿%# 𝐺 , and 𝐿"#.

 Experimental Evaluation: 
 

• Adversarial attack classification performance (%) based on adversarial images 
𝐼$%&, ground-truth adversarial perturbations 𝛿, and estimated residuals 𝐼#, i.e., 
REDRL. 
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