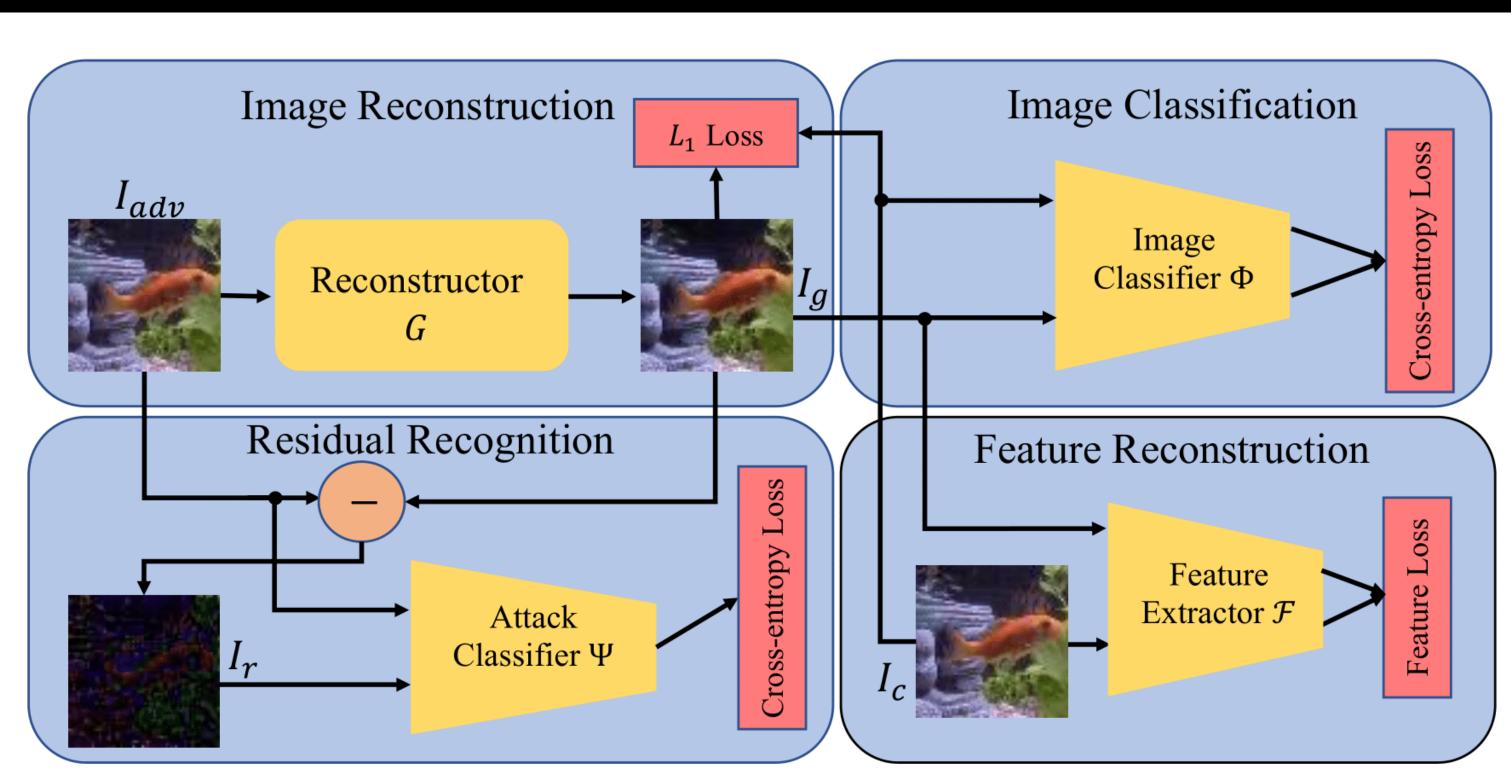


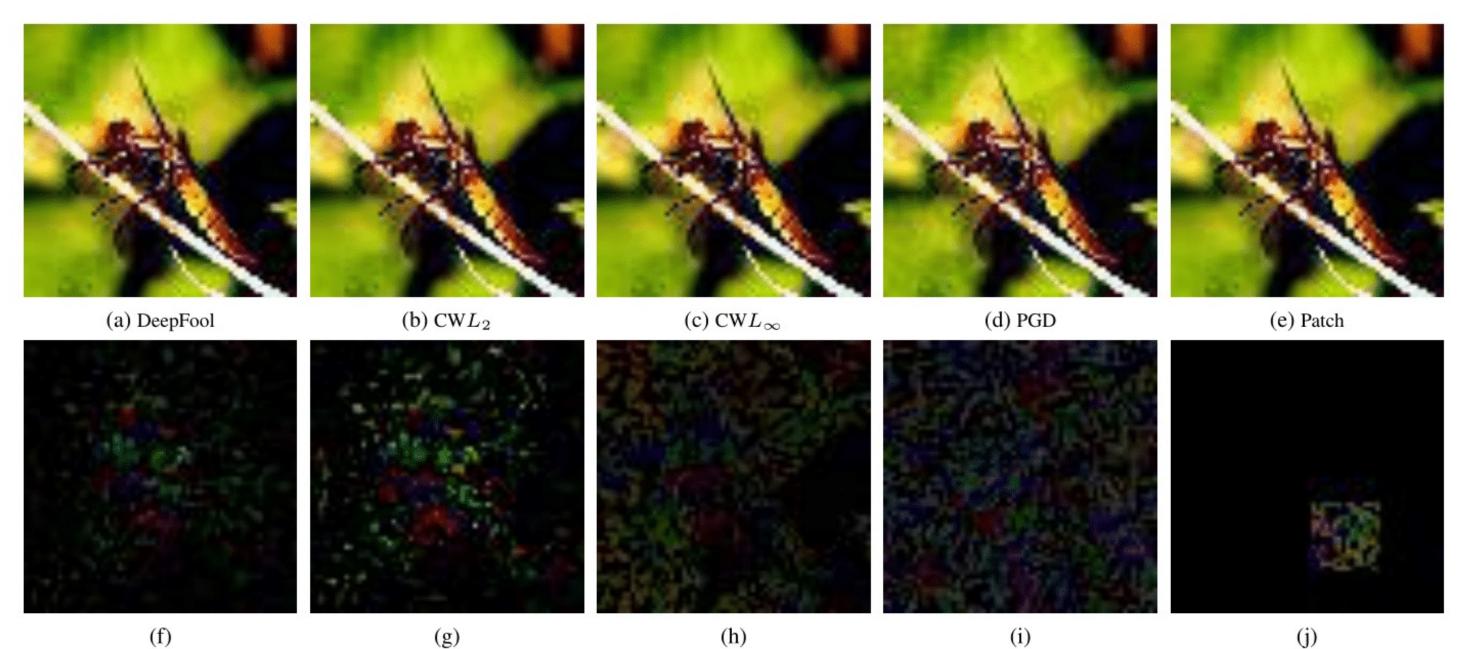
Introduction



In this work, we examine the extent to which the precise attack algorithm used influences the adversarial examples it generates. To this end, we build a pipeline (*REDRL*) for classifying adversarial examples by the associated attack algorithm, finding that in fact different attacks generate unique examples.

Our contributions can be summarized as follows:

- We demonstrate that the perturbations generated by each attack algorithm have *distinctive signatures*, facilitating the identification of the attack type.
- We propose an adversarial perturbation recovery framework, *Reverse* Engineering of Deceptions via Residual Learning (REDRL), to estimate the adversarial perturbations and to detect attack algorithm.



Adversarial samples (first row) and their respective perturbations (second row).

Identifying Attack-Specific Signatures in **Adversarial Examples**

Hossein Souri^{*1}, Pirazh Khorramshahi^{*1}, Chun Pong Lau¹, Micah Goldblum², Rama Chellappa¹

¹Johns Hopkins University, ²New York University

Method (REDRL)

Image Reconstruction:

A reconstructed image I_a should lie close in pixel space to the clean image I_c that was used to generate the adversarial example:

$$\mathcal{L}_R(G) = \mathbb{E}_{I_c,\delta} \left[|I_c - G(I_c + \delta)|_1 \right]$$

• Feature Reconstruction:

To encourage semantic similarity, the reconstructed image I_a should also lie close to the clean image I_c in feature space:

$$\mathcal{L}_F(G) = \mathbb{E}_{I_c,\delta} \bigg[|\mathcal{F}(I_c) - \mathcal{F}(G(I_c + \delta))|_2 \bigg]$$

Image Classification:

A pretrained image classifier Φ should yield similar classification scores on the reconstructed image I_a and the clean image I_c . This objective which can be framed in the context of Knowledge Distillation:

$$\mathcal{L}_{IC}(G) = \mathbb{E}_{I_c,\delta} \left[-\log(\frac{e^{\Phi_i(G(I_c+\delta))}}{\sum_{j=1}^C e^{\Phi_j(G(I_c+\delta))}}) \right]$$

Residual Recognition:

As an estimate of the adversarial perturbation, the residual image $I_r = I_{adv} - I_g$ along with the adversarial image I_{adv} is fed to the attack algorithm classes.

$$\mathcal{L}_{AC}(G) = \mathbb{E}_{I_c,\delta} \left[-\log(\frac{e^{\Psi_i(I_r, I_c + \delta)}}{\sum_{j=1}^A e^{\Psi_j(I_r, I_c + \delta)}}) \right]$$

• End-To-End Training:

The four stages of REDRL are trained simultaneously in an end-to-end fashion for the purpose of adversarial perturbation estimation and attack algorithm recognition:

$$\mathcal{L}_{total} = \min_{G} \bigg[\mathcal{L}_{AC}(G) + \lambda_1 \mathcal{L}_R(G) + \lambda_2 \mathcal{L}_F(G) + \lambda_3 \mathcal{L}_{IC}(G) \bigg]$$

classification network Ψ to be classified into one of the adversarial attack

Experimental Setup:

Experimental Evaluation:

REDRL.

Ablation Study:

	Dataset									
Class	CIFAR-10				Tiny ImageNet					
	Α	В	С	REDRL	A	B	C	REDRL		
Clean	99.9	98.9	100	100	99.8	99.5	99.5	99.7		
DeepFool	99.3	98.8	99.8	97.4	87.1	93.8	71.9	75.3		
PGD	99.9	99.6	99.9	99.9	99.9	99.8	99.9	99.9		
CWL_2	84.2	88.7	93.3	96.6	58.7	60.2	61.5	66.3		
CWL_{∞}	63.3	70.8	71.6	74.1	42.9	43.0	53.8	57.7		
Patch	99.7	99.8	99.9	99.9	98.6	98.9	99.2	99.6		
Total	90.59	92.58	93.51	94.28	81.9	82.7	83.72	85.57		

Experiments

• In this study, we consider the CIFAR-10 and Tiny ImageNet datasets and the following candidate attacks: PGD, DeepFool, CWL_2 , CWL_{∞} , and Adversarial Patch. We use ResNet-50, ResNeXt-50, DenseNet-121, and VGG-19 for image classifier Φ . For the attack classification network Ψ , we employ a ResNet-18 with label smoothing.

Attack Type	Configuration			
DeepFool	Steps: 50			
PGD	$\epsilon \in \{4, 8, 16\}$			
	$\alpha: 0.01$, Steps: 100			
CWL_2	Steps: 1000, $c \in \{100, 1000\}$			
	Learning Rate: 0.01, κ : 0			
CWL_{∞}	Steps: 100, $\epsilon \in \{4, 8, 16\}$			
$C W L_{\infty}$	Learning Rate: 0.005, c : 5			
Adversarial Patch	Steps: 100, $\epsilon \in \{4, 8, 16\}$			
	Patch Size $\in \{4 \times 4, 8 \times 8, 16 \times 16\}$			

• Adversarial attack classification performance (%) based on adversarial images I_{adv} , ground-truth adversarial perturbations δ , and estimated residuals I_r , i.e.,

	Dataset								
	C	IFAR-1	0	Tiny ImageNet					
Class	Ir	put to	Ψ	Input to Ψ					
	I_{adv}	δ	I_r	I_{adv}	δ	I_r			
Clean	12.0	100	100	62.5	99.9	99.7			
PGD	73.5	99.9	99.9	88.7	99.7	99.9			
DeepFool	56.2	99.9	97.4	53.2	64.0	75.3			
CWL_2	73.4	98.6	96.6	28.0	96.4	66.3			
$\mathrm{CW}L_\infty$	33.4	71.6	74.1	24.2	92.7	57.7			
Patch	58.4	99.9	99.9	73.8	99.9	99.6			
Total	57.5	94.2	94.2	59.4	95.7	85.5			

A. We ignore FR and IC stages and only optimize network G for $L_R(G)$ and $L_{AC}(G)$ B. We add L_F so that network G is optimized on the $L_R(G)$, $L_F(G)$, and $L_{AC}(G)$ objectives. C. We investigate the effect of image classification on the overall performance. Therefore, we optimize G on $L_R(G)$, $L_{IC}(G)$, and L_{AC} .