Joint Signal Recovery and Graph Learning from Incomplete Time-Series

Amirhossein Javaheri[†]*, Arash Amini^{*}, Farokh Marvasti^{*}, Daniel P. Palomar[†] sajavaheri@connect.ust.hk, aamini@sharif.edu, marvasti@sharif.edu, palomar@ust.hk

> [†]The Hong Kong University of Science and Technology *Sharif University of Technology

2024 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2024)

April, 2024

Outline

1 Overview

- What Is a Graph Signal?
- Graph Learning
- Graph Signal Recovery
- Joint Graph Learning and Signal Recovery

2 Proposed Approach

- Proposed Model
- Problem Formulation
- Solution
 - Signal Update
 - Graph Update
- 3 Numerical Results
 - Synthetic Data
 - Real Data

Outline

1 Overview

- What Is a Graph Signal?
- Graph Learning
- Graph Signal Recovery
- Joint Graph Learning and Signal Recovery

2 Proposed Approach

- Proposed Model
- Problem Formulation
- Solution
 - Signal Update
 - Graph Update
- 3 Numerical Results
 - Synthetic Data
 - Real Data

What Is a Graph Signal?

- Graphs provide efficient representation tools for data in a variety of applications in signal processing, machine learning, finance, etc [Dong, Thanou, Rabbat, *et al.* 2019; Marques *et al.* 2020].
- A weighted graph is denoted with G = {V, E, W} (V vertex set, E edge set, and W (weighted) adjacency matrix).
- For an undirected graph (symmetric W), one may represent the graph with edge weights vector w. There are equivalent representations via adjacency/Laplacian operator:
 W = A(w), L = Diag(W1) − W = L(w) [Kumar et al. 2020].
- A (time-varying) graph signal $\mathbf{x}_t = f(\mathcal{V}; t)$ is a time series with spatio-temporal (vertex/time domain) correlations.

How to Represent Data Matrices with Graphs?

- Suppose, we are given N measurements of a (time-varying) graph signal $\mathbf{x}_t \in \mathbb{R}^N$ as $\mathbf{X} = [\mathbf{x}_1 \dots, \mathbf{x}_T] \in \mathbb{R}^{N \times T}$.
- Each row of X is a time-series (time samples) corresponding to a vertex of the graph.
- An example: \mathbf{x}_t is the prices of N stocks in a financial market and T is the number of daily measurements.
- A weighted undirected graph can model similarity (correlations) between elements (the higher $W_{i,j}$, the more similar (correlated) the time series at vertices i and j will be).

Graph Learning

Problem

• Given complete data, the goal is to find a graph structure that models inter-connected similarities/dependencies.

Graph learning given the (complete) data

Related Works

Algorithms that use probabilistic methods via a Gaussian Markov Random Field (GMRF) model, e.g., [Egilmez et al. 2017; Kumar et al. 2020; Lake & Tenenbaum 2010; Zhao et al. 2019], or deterministic regularization criteria such as smoothness [Kalofolias 2016] or stationarity [Segarra et al. 2016].

Graph Signal Recovery

Problem

Given the underlying graphical model, the goal is to recover (impute) the signal.

Recovery of the data given the underlying graph structure

Related Works

 Incorporating properties such as least total-variation [Chen et al. 2015], stationarity [Perraudin & Vandergheynst 2017], spatio-temporal smoothness [Qiu et al. 2017], sparsity [Safavi et al. 2018] of the signal in a graph representation domain for imputation.

Joint Graph Learning and Signal Recovery

Problem

The goal is to simultaneously impute the signal and infer the the underlying graphical models.

Joint signal recovery and graph learning

Related Works

Stochastic approaches to joint undirected graph learning and signal denoising using smoothness [Dong, Thanou, Frossard, *et al.* 2016] (GL-SigRep) and long-short term characteristics [Liu *et al.* 2020] (GL-LRSS) Or deterministic approaches for joint directed graph learning and signal recovery via Vector Autoregressive (VAR) model [loannidis *et al.* 2019] (JISG)

Outline

1 Overview

- What Is a Graph Signal?
- Graph Learning
- Graph Signal Recovery
- Joint Graph Learning and Signal Recovery

2 Proposed Approach

- Proposed Model
- Problem Formulation
- Solution
 - Signal Update
 - Graph Update
- 3 Numerical Results
 - Synthetic Data
 - Real Data

Assumptions:

- Assume a connected undirected graph that models similarity in temporal variations of the signal elements. The larger $W_{i,j}$, the more similar the *i*-th and *j*-th components of the signal vary in time.
- The observations of the original signal have missing entries

Goal:

- Graph learning from missing data or semi-blind recovery of graph signal (no graph prior)
- Learn the graph and recover (impute) the signal in a jointly fashion.

Joint signal recovery and graph learning (the investigated problem)

Applications:

 Our model can be applied for graph signals (time-series) where the temporal evolution/variation is of importance

Examples:

- **Finance**: Modelling the change (rate of return) in the stock prices or market indices. Missing entries occur due to trading halts, suspensions, holidays, etc.
- Healthcare: Monitoring changes in vital signs such as heart rate, blood pressure, etc..
 Missing values due to sensor failure or noise.
- Environmental Monitoring: Modelling variations in the pollution levels, temperature, etc. Missing values due to sensor failure or noise.
- Security and Surveillance: Monitoring changes in activity patterns, such as motion detection, sound level, etc. Missing values due to sensor failure or noise.

Proposed Method: Intuition

Why spatio-temporal smoothness?

 Assume a first order VAR model with (spatially) non-white innovations with the graph Laplacian L(w) as the precision matrix

$$\mathbf{x}_t = \mathbf{x}_{t-1} + \boldsymbol{\epsilon}_t \quad 1 \le t \le T \qquad (\mathbf{x}_0 = \mathbf{0})$$
$$p_{\boldsymbol{\epsilon}}(\boldsymbol{\epsilon}_t) \propto (\det^* \mathcal{L}(\mathbf{w}))^{\frac{1}{2}} \exp\left(-\frac{1}{2}\boldsymbol{\epsilon}_t^T \mathcal{L}(\mathbf{w})\boldsymbol{\epsilon}_t\right)$$

Assume we have noisy (AWGN) and missing observations of the original signal

$$\mathbf{y}_t = \mathbf{m}_t \odot (\mathbf{x}_t + \mathbf{n}_t) \quad \mathbf{n}_t \sim \mathcal{N}(\mathbf{0}, \sigma_n^2 \mathbf{I})$$

• The MAP estimation of the signal and graph (X and w) with some sparsity-promoting graph prior $(p(\mathbf{w}) \propto \exp(-\gamma \|\mathbf{w}\|_1)$ gives:

$$\mathbf{X}^{\star}, \mathbf{w}^{\star} = \underset{\mathbf{X}, \mathbf{w} \ge \mathbf{0}}{\operatorname{argmin}} \frac{1}{\sigma_n^2} \|\mathbf{Y} - \mathbf{M} \odot \mathbf{X}\|_F^2 + S_T(\mathbf{X}, \mathbf{w}) - T \log \det^* \mathcal{L}(\mathbf{w}) + \gamma \|\mathbf{w}\|_1$$

The term $S_T(\mathbf{X}, \mathbf{w}) \triangleq \sum_{t=1}^T (\mathbf{x}_t - \mathbf{x}_{t-1})^\top \mathcal{L} \mathbf{w} (\mathbf{x}_t - \mathbf{x}_{t-1})$ is called spatio-temporal smoothness.

Proposed Method: Intuition

Why spatio-temporal smoothness?

 \blacksquare Assume i.i.d. random samples of a zero-mean GMRF with the graph Laplacian $\mathcal{L}(\mathbf{w})$ as the precision matrix

$$\mathbf{x}_t \sim \mathcal{N}\left(\mathbf{0}, \mathcal{L}(\mathbf{w})^\dagger
ight), \qquad \mathbf{x}_{t-1} \sim \mathcal{N}\left(\mathbf{0}, \mathcal{L}(\mathbf{w})^\dagger
ight)$$

• The difference $\mathbf{z}_t = \mathbf{x}_t - \mathbf{x}_{t-1}$ is still a zero-mean GMRF

$$\mathbf{z}_t \sim \mathcal{N}\left(\mathbf{0}, 2\mathcal{L}(\mathbf{w})^{\dagger}\right)$$

Then for $T \to \infty$, simple (spatial) graph smoothness $S(\mathbf{X}, \mathbf{w}) = \sum_t \mathbf{x}_t^\top \mathcal{L}(\mathbf{w}) \mathbf{x}_t$ would be only a factor of the spatio-temporal smoothness $S_T(\mathbf{X}, \mathbf{w})$

$$\frac{1}{T}S(\mathbf{X}, \mathbf{w}) = \frac{1}{T}\sum_{t} \mathbf{x}_{t}^{\top} \mathcal{L}(\mathbf{w}) \mathbf{x}_{t} \approx \operatorname{Tr} \left(\mathcal{L}(\mathbf{w}) \mathbb{E}[\mathbf{x}_{t} \mathbf{x}_{t}^{\top}] \right) = \operatorname{Tr} \left(\mathcal{L}(\mathbf{w}) \mathcal{L}(\mathbf{w})^{\dagger} \right)$$
$$= \frac{1}{2} \operatorname{Tr} \left(\mathcal{L}(\mathbf{w}) 2\mathcal{L}(\mathbf{w})^{\dagger} \right) = \operatorname{Tr} \left(\mathcal{L}(\mathbf{w}) \mathbb{E}[\mathbf{z}_{t} \mathbf{z}_{t}^{\top}] \right) \approx \frac{1}{2} \frac{1}{T} \sum_{t} \mathbf{z}_{t}^{\top} \mathcal{L}(\mathbf{w}) \mathbf{z}_{t} = \frac{1}{2T} S_{T}(\mathbf{X}, \mathbf{w})$$

Conclusion

The spatio-temporal smoothness assumption works for both i.i.d. and time-dependent signals

Amirhossein Javaheri (HKUST)

Proposed Method: Problem Formulation

Problem Formulation

$$\begin{aligned} \mathbf{X}^{\star}, \mathbf{w}^{\star} &= \operatorname*{argmin}_{\mathbf{X}, \mathbf{w} \geq \mathbf{0}} f(\mathbf{X}, \mathbf{w}) \\ f(\mathbf{X}, \mathbf{w}) &\triangleq \left\| \mathbf{Y} - \mathbf{M} \odot \mathbf{X} \right\|_{F}^{2} + \alpha S_{T}(\mathbf{X}, \mathbf{w}) - \beta R(\mathbf{w}) + \gamma \left\| \mathbf{w} \right\|_{1} \end{aligned}$$

a
$$\|\mathbf{Y} - \mathbf{M} \odot \mathbf{X}\|_F^2$$
: Fidelity measure (similarity to the observation)

- M: The missing/sampling mask
- **Y**: Observations of the original signal: $\mathbf{y}_t = \mathbf{m}_t \odot \mathbf{x}_t$ or $\mathbf{Y} = \mathbf{M} \odot \mathbf{X}$
- $S_T(\mathbf{X}, \mathbf{w})$: Spatio-temporal smoothness measure: $S_T(\mathbf{X}, \mathbf{w}) = \operatorname{Tr} \left(\mathcal{L}(\mathbf{w}) \Delta(\mathbf{X}) \Delta(\mathbf{X})^\top \right)$
 - D: The (first order) difference matrix: $\mathbf{D} = \sum_{t=1}^{T} \mathbf{e}_{t-1} \mathbf{e}_{t}^{\top}$
 - $\Delta(\mathbf{X})$: The (first order) difference signal with columns $\Delta_t(\mathbf{X}) := \mathbf{x}_t \mathbf{x}_{t-1}$ ($\Delta(\mathbf{X}) := \mathbf{X} - \mathbf{D}\mathbf{X}$)
- **\square** $R(\mathbf{w})$: Regularization term to enforce connected graph structure:

$$R(\mathbf{w}) = -\log \det(\mathcal{L}(\mathbf{w}) + \mathbf{J}), \qquad \mathbf{J} = (1/N)\mathbf{1}\mathbf{1}^{\top}$$

• $\|\mathbf{w}\|_1$: Sparsity promoting term (need to apply threshold to be effective)

Proposed Method: Solution

Optimization Algorithm:

- We use block Majorization-Minimization (MM) [Sun et al. 2017] or the Block Successive Upperbound Minimization (BSUM) [Razaviyayn et al. 2013] to solve the problem.
- \blacksquare We have two (block) variables ${\bf X}$ and ${\bf w} \rightarrow$ we have two update steps.
- In each update step fix one (block) variable, and minimize a majorizer over the other (block) variable.

Solution: Signal (X) Update

$\mathbf{X}\text{-subproblem}$

$$\begin{aligned} \mathbf{X}^{\star} &= \operatorname*{argmin}_{\mathbf{X}} f_{\mathbf{X}}(\mathbf{X}) \\ f_{\mathbf{X}}(\mathbf{X}) &= \operatorname{Tr} \left((\mathbf{Y} - \mathbf{M} \odot \mathbf{X}) (\mathbf{Y} - \mathbf{M} \odot \mathbf{X})^{\top} \right) + \alpha \operatorname{Tr} \left(\mathcal{L}(\mathbf{w}) \Delta(\mathbf{X}) \Delta(\mathbf{X})^{\top} \right) + \operatorname{const.} \end{aligned}$$

X-update steps:

• Vectorization: Restate the $f_{\mathbf{X}}(\mathbf{X})$ in vectorized form

$$f_{\mathbf{X}}(\mathbf{X}) = \operatorname{vec}(\mathbf{X})^{\top} \mathbf{G} \operatorname{vec}(\mathbf{X}) - 2\operatorname{vec}(\mathbf{X})^{\top} \mathbf{b} + \operatorname{const}$$
$$\mathbf{G} = \operatorname{Diag}(\operatorname{vec}(\mathbf{M})) + \alpha \mathbf{H}^{\top} (\mathbf{I}_T \otimes \mathcal{L}(\mathbf{w})) \mathbf{H}, \quad \mathbf{H} = \mathbf{I}_{NT} - \mathbf{D}^{\top} \otimes \mathbf{I}_N$$

• Majorization: Find a majorizer for less complex solution (compared to inverting G) $f_{\mathbf{X}}^{S}(\mathbf{X};\mathbf{X}_{0}) = f_{\mathbf{X}}(\mathbf{X}) + \operatorname{vec}(\mathbf{X} - \mathbf{X}_{0})^{\top} (\theta \mathbf{I}_{NT} - \mathbf{G}) \operatorname{vec}(\mathbf{X} - \mathbf{X}_{0}) \geq f_{\mathbf{X}}(\mathbf{X})$

A sufficient condition for this upperbound to hold is if $\theta > 1 + 4\alpha \|\mathcal{L}(\mathbf{w})\| \ge \|\mathbf{G}\|$ Minimization: Minimize $f_{\mathbf{X}}^{S}(\mathbf{X};\mathbf{X}_{0})$ for $\mathbf{X}_{0} = \mathbf{X}^{j}$ to obtain $\mathbf{X}^{(j+1)}$

$$\mathbf{X}^{(j+1)} = \operatorname*{argmin}_{\mathbf{X}} f^{S}_{\mathbf{X}}(\mathbf{X}; \mathbf{X}^{(j)}) = \mathbf{X}^{(j)} - \frac{1}{2\theta} \frac{\partial}{\partial \mathbf{X}} f_{\mathbf{X}}(\mathbf{X}^{(j)})$$

Solution: Graph (w) Update

w-subproblem

$$\begin{split} \mathbf{w}^{\star} &= \operatorname*{argmin}_{\mathbf{w}} f_{\mathbf{w}}(\mathbf{w}) \\ f_{\mathbf{w}}(\mathbf{w}) &= \operatorname{Tr}(\mathcal{L}(\mathbf{w})\mathbf{K}) - \log \det(\mathcal{L}(\mathbf{w}) + \mathbf{J}), \qquad \mathbf{K} = \frac{1}{\beta} \left(\alpha \Delta(\mathbf{X}) \Delta(\mathbf{X})^{\top} + \gamma/2 \mathbf{H}_{\text{off}} \right) \end{split}$$

w-update steps:

First Majorization: Linear approximation of the concave function $\log \det((\mathcal{L}(\mathbf{w}) + \mathbf{J})^{-1})$

$$-\log \det(\mathcal{L}(\mathbf{w}) + \mathbf{J}) \leq \operatorname{Tr} \left(\mathbf{F}_0(\mathbf{G}\operatorname{Diag}(\tilde{\mathbf{w}})\mathbf{G}^{\top})^{-1} \right) - \log \det(\mathcal{L}(\mathbf{w}_0) + \mathbf{J}) - N$$

Here $\mathbf{F}_0 = \mathcal{L}(\mathbf{w}_0) + \mathbf{J}$, $\mathbf{G} = [\mathbf{E}, \mathbf{1}]$, $\tilde{\mathbf{w}} = [\mathbf{w}^\top 1/N]^\top$ and \mathbf{w}_0 is a fixed (previous) point Also $\mathbf{E} = [\boldsymbol{\xi}_1, \dots, \boldsymbol{\xi}_{N(N-1)/2}] \in \mathbb{R}^{N \times N(N-1)/2}$ consists of vectors $\boldsymbol{\xi}_k$ for $k = i - j + \frac{j-1}{2}(2N - j), \ i > j$, each of which has a +1 at the *j*-th position, a -1 at the *i*-th position, and zeros elsewhere.

Solution: Graph (w) Update

w-update steps:

Double Majorization!: Use an inequality from linear algebra

$$\begin{aligned} \operatorname{Tr}\left(\mathbf{F}_{0}(\mathbf{G}\operatorname{Diag}(\tilde{\mathbf{w}})\mathbf{G}^{\top})^{-1}\right) &\leq \operatorname{Tr}\left(\mathbf{F}_{0}^{-1}\mathbf{G}\operatorname{Diag}(\tilde{\mathbf{w}}_{0}^{\circ2} \oslash \tilde{\mathbf{w}})\mathbf{G}^{\top}\right) \\ &= \langle \mathbf{w}_{0}^{\circ2} \oslash \mathbf{w}, \mathcal{L}^{\star}(\mathbf{F}_{0}^{-1}) \rangle + \operatorname{Tr}\left(\mathbf{F}_{0}^{-1}\mathbf{J}\right) \end{aligned}$$

• Final Majorization!!: Add $\sum_i \tau q_i w_0{}_i^2 h(w_i/w_0{}_i)$ with $h(x) = x + \frac{1}{x} - 2 \ge 0$ for x > 0

$$\begin{aligned} f_{\mathbf{w}}(\mathbf{w}) &\leq f_{\mathbf{w}}^{S}(\mathbf{w};\mathbf{w}_{0}) \triangleq \tau \langle \mathbf{q} \odot \mathbf{w}_{0}^{\circ 2}, \mathbf{w} \oslash \mathbf{w}_{0} + (\mathbf{w}_{0} + 1/\tau) \oslash \mathbf{w} - 2 \rangle + \\ & \langle \mathbf{w}, \mathbf{r} \rangle + \operatorname{Tr} \left((\mathcal{L}(\mathbf{w}_{0}) + \mathbf{J})^{-1} \mathbf{J} \right) - \log \det(\mathcal{L}(\mathbf{w}_{0}) + \mathbf{J}) - N \end{aligned}$$

Here $\mathbf{r} = \mathcal{L}^*(\mathbf{K})$, $\mathbf{q} = \mathcal{L}^*((\mathcal{L}\mathbf{w}_0 + \mathbf{J})^{-1})$, and $\tau > 0$ is a constant. Minimization: Minimize $f^S_{\mathbf{w}}(\mathbf{w}; \mathbf{w}^{(j)})$ for $\mathbf{w}_0 = \mathbf{w}^j$ to obtain $\mathbf{w}^{(j+1)}$

$$\begin{split} \mathbf{w}^{(j+1)} &= \underset{\mathbf{w}}{\operatorname{argmin}} \ f^{S}_{\mathbf{w}}(\mathbf{w};\mathbf{w}^{(j)}) \\ &= \mathbf{w}^{(j)} \odot \sqrt{(\tau \mathbf{w}^{(j)} \odot \mathbf{q} + \mathbf{q}) \oslash (\tau \mathbf{w}^{(j)} \odot \mathbf{q} + \mathbf{r})}. \end{split}$$

Outline

1 Overview

- What Is a Graph Signal?
- Graph Learning
- Graph Signal Recovery
- Joint Graph Learning and Signal Recovery

2 Proposed Approach

- Proposed Model
- Problem Formulation
- Solution
 - Signal Update
 - Graph Update

3 Numerical Results

- Synthetic Data
- Real Data

Numerical Results (Synthetic Data)

Graph Learning

- Evaluating our model for graph Laplacian $\mathbf{L} = \mathcal{L}(\mathbf{w})$ estimation from synthetic data.
- The F-score and Relative Error are used as performance metrics.

Numerical Results (Synthetic Data)

Signal Recovery

- Evaluating our model for graph signal X recovery from synthetic data.
- The SNR and NMSE are used as performance metrics.

Numerical Results (Real Data)

Signal Recovery

- Evaluating our model for graph signal X recovery from real (US temperature) data.
- The SNR and NMSE are used as performance metrics.

Numerical Results (Real Data)

Signal Recovery

- Evaluating our model for graph signal X recovery from real (S&P500 stock data) data.
- The SNR and NMSE are used as performance metrics.

Thanks for listening. For more information visit

www.danielpalomar.com github.com/convexfi

References I

- Chen, S., Sandryhaila, A., Moura, J. M. F. & Kovačević, J. Signal Recovery on Graphs: Variation Minimization. IEEE Transactions on Signal Processing 63. arXiv: 1411.7414, 4609–4624. ISSN: 1053-587X, 1941-0476. http://arxiv.org/abs/1411.7414 (2021) (Sept. 2015).
- Dong, X., Thanou, D., Frossard, P. & Vandergheynst, P. Learning Laplacian Matrix in Smooth Graph Signal Representations. IEEE Transactions on Signal Processing 64, 6160–6173. ISSN: 1053-587X, 1941-0476. http://ieeexplore.ieee.org/document/7555590/ (2021) (Dec. 2016).
- Dong, X., Thanou, D., Rabbat, M. & Frossard, P. Learning graphs from data: A signal representation perspective. IEEE Signal Processing Magazine 36. arXiv: 1806.00848, 44–63. ISSN: 1053-5888, 1558-0792. http://arxiv.org/abs/1806.00848 (2021) (May 2019).
- Egilmez, H. E., Pavez, E. & Ortega, A. Graph Learning From Data Under Laplacian and Structural Constraints. *IEEE Journal of Selected Topics in Signal Processing*, 825–841. ISSN: 1941-0484 (Sept. 2017).
- Ioannidis, V. N., Shen, Y. & Giannakis, G. B. Semi-Blind Inference of Topologies and Dynamical Processes Over Dynamic Graphs. IEEE Transactions on Signal Processing 67, 2263–2274. ISSN: 1053-587X, 1941-0476. https://ieeexplore.ieee.org/document/8662630/ (2021) (May 2019).
- Kalofolias, V. How to Learn a Graph from Smooth Signals. en. in Proceedings of the 19th International Conference on Artificial Intelligence and Statistics ISSN: 1938-7228 (PMLR, May 2016), 920–929. https://proceedings.mlr.press/v51/kalofolias16.html (2023).
- Kumar, S., Ying, J., Cardoso, J. V. d. M. & Palomar, D. P. A Unified Framework for Structured Graph Learning via Spectral Constraints. Journal of Machine Learning Research 21, 1–60. http://jmlr.org/papers/v21/19-276.html (2020).
- Lake, B. & Tenenbaum, J. Discovering structure by learning sparse graphs. in Proceedings of the 32nd Annual Meeting of the Cognitive Science Society (Cognitive Science Society, Inc., Portland, Oregon, United States, Aug. 2010), 778–784.
- Liu, Y. et al. Graph Learning for Spatiotemporal Signals with Long- and Short-Term Characterization. IEEE Transactions on Signal and Information Processing over Networks 6. arXiv: 1911.08018, 699–713. ISSN: 2373-776X, 2373-7778. http://arxiv.org/abs/1911.08018 (2021) (2020).
- Marques, A. G., Kiyavash, N., Moura, J. M., Van De Ville, D. & Willett, R. Graph Signal Processing: Foundations and Emerging Directions [From the Guest Editors]. IEEE Signal Processing Magazine 37, 11–13. ISSN: 1053-5888, 1558-0792. https://ieeexplore.ieee.org/document/9244183/ (2022) (Nov. 2020).
- Perraudin, N. & Vandergheynst, P. Stationary signal processing on graphs. IEEE Transactions on Signal Processing 65. arXiv: 1601.02522, 3462–3477. ISSN: 1053-587X, 1941-0476. http://arxiv.org/abs/1601.02522 (2021) (July 2017).
- Qiu, K. et al. Time-Varying Graph Signal Reconstruction. IEEE Journal of Selected Topics in Signal Processing 11, 870–883. ISSN: 1932-4553, 1941-0484. http://ieeexplore.ieee.org/document/7979523/ (2021) (Sept. 2017).

- Razaviyayn, M., Hong, M. & Luo, Z.-Q. A Unified Convergence Analysis of Block Successive Minimization Methods for Nonsmooth Optimization. en. SIAM Journal on Optimization 23, 1126–1153. ISSN: 1052-6234, 1095-7189. http://epubs.siam.org/doi/10.1137/120891009 (2022) (Jan. 2013).
- Safavi, S. H., Khatua, M., Cheung, N.-M. & Torkamani-Azar, F. On Sparse Graph Fourier Transform. arXiv:1811.08609 [eess]. arXiv: 1811.08609 [http://arxiv.org/abs/1811.08609 (2022) (Nov. 2018).
- Segarra, S., Marques, A. G., Mateos, G. & Ribeiro, A. Network Topology Inference from Spectral Templates. arXiv:1608.03008 [physics]. arXiv: 1608.03008. http://arxiv.org/abs/1608.03008 (2021) (Aug. 2016).
- Sun, Y., Babu, P. & Palomar, D. P. Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning. IEEE Transactions on Signal Processing 65, 794–816. ISSN: 1053-587X, 1941-0476. http://ieeexplore.ieee.org/document/7547360/ (2021) (Feb. 2017).
- Zhao, L., Wang, Y., Kumar, S. & Palomar, D. P. Optimization Algorithms for Graph Laplacian Estimation via ADMM and MM. IEEE Transactions on Signal Processing 67, 4231–4244. ISSN: 1053-587X, 1941-0476. https://ieeexplore.ieee.org/document/8747497/ (2021) (Aug. 2019).