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What Is a Graph Signal?

Graphs provide efficient representation tools for data in a variety of applications in signal
processing, machine learning, finance, etc [Dong, Thanou, Rabbat, et al. 2019; Marques
et al. 2020].
A weighted graph is denoted with G = {V, E ,W} (V vertex set, E edge set, and W
(weighted) adjacency matrix).
For an undirected graph (symmetric W), one may represent the graph with edge weights
vector w. There are equivalent representations via adjacency/Laplacian operator:
W = A(w), L = Diag(W1)−W = L(w) [Kumar et al. 2020].
A (time-varying) graph signal xt = f(V; t) is a time series with spatio-temporal
(vertex/time domain) correlations.

Brain Network Social Network Sensor Network
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How to Represent Data Matrices with Graphs?

Suppose, we are given N measurements of a (time-varying) graph signal xt ∈ RN as
X = [x1 . . . ,xT ] ∈ RN×T .

Each row of X is a time-series (time samples) corresponding to a vertex of the graph.

An example: xt is the prices of N stocks in a financial market and T is the number of
daily measurements.

A weighted undirected graph can model similarity (correlations) between elements (the
higher Wi,j , the more similar (correlated) the time series at vertices i and j will be).
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Graph Learning

Problem

Given complete data, the goal is to find a graph structure that models inter-connected
similarities/dependencies.

Graph learning given the (complete) data

Related Works

Algorithms that use probabilistic methods via a Gaussian Markov Random Field (GMRF)
model, e.g., [Egilmez et al. 2017; Kumar et al. 2020; Lake & Tenenbaum 2010; Zhao
et al. 2019], or deterministic regularization criteria such as smoothness [Kalofolias 2016] or
stationarity [Segarra et al. 2016].
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Graph Signal Recovery

Problem

Given the underlying graphical model, the goal is to recover (impute) the signal.

Recovery of the data given the underlying graph structure

Related Works

Incorporating properties such as least total-variation [Chen et al. 2015], stationarity
[Perraudin & Vandergheynst 2017], spatio-temporal smoothness [Qiu et al. 2017], sparsity
[Safavi et al. 2018] of the signal in a graph representation domain for imputation.
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Joint Graph Learning and Signal Recovery

Problem

The goal is to simultaneously impute the signal and infer the the underlying graphical
models.

Joint signal recovery and graph learning

Related Works

Stochastic approaches to joint undirected graph learning and signal denoising using smoothness
[Dong, Thanou, Frossard, et al. 2016] (GL-SigRep) and long-short term characteristics [Liu
et al. 2020] (GL-LRSS) Or deterministic approaches for joint directed graph learning and signal
recovery via Vector Autoregressive (VAR) model [Ioannidis et al. 2019] (JISG)
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Proposed Method

Assumptions:

Assume a connected undirected graph that models similarity in temporal variations of the
signal elements. The larger Wi,j , the more similar the i-th and j-th components of the
signal vary in time.

The observations of the original signal have missing entries

Goal:

Graph learning from missing data or semi-blind recovery of graph signal (no graph prior)

Learn the graph and recover (impute) the signal in a jointly fashion.

Joint signal recovery and graph learning (the investigated problem)
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Proposed Method: Applications

Applications:

Our model can be applied for graph signals (time-series) where the temporal
evolution/variation is of importance

Examples:

Finance: Modelling the change (rate of return) in the stock prices or market indices.
Missing entries occur due to trading halts, suspensions, holidays, etc.

Healthcare: Monitoring changes in vital signs such as heart rate, blood pressure, etc..
Missing values due to sensor failure or noise.

Environmental Monitoring: Modelling variations in the pollution levels, temperature,
etc. Missing values due to sensor failure or noise.

Security and Surveillance: Monitoring changes in activity patterns, such as motion
detection, sound level, etc. Missing values due to sensor failure or noise.
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Proposed Method: Intuition

Why spatio-temporal smoothness?

Assume a first order VAR model with (spatially) non-white innovations with the graph
Laplacian L(w) as the precision matrix

xt = xt−1 + ϵt 1 ≤ t ≤ T (x0 = 0)

pϵ(ϵt) ∝ (det∗L(w))
1
2 exp

(
−1

2
ϵTt L(w)ϵt

)
Assume we have noisy (AWGN) and missing observations of the original signal

yt = mt ⊙ (xt + nt) nt ∼ N (0, σ2
nI)

The MAP estimation of the signal and graph (X and w) with some sparsity-promoting
graph prior (p(w) ∝ exp(−γ ∥w∥1) gives:

X⋆,w⋆ =argmin
X,w≥0

1

σ2
n

∥Y −M⊙X∥2F + ST (X,w)− T log det∗L(w) + γ ∥w∥1

The term ST (X,w) ≜
∑T

t=1(xt − xt−1)
⊤Lw(xt − xt−1) is called spatio-temporal

smoothness.
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Proposed Method: Intuition

Why spatio-temporal smoothness?
Assume i.i.d. random samples of a zero-mean GMRF with the graph Laplacian L(w) as
the precision matrix

xt ∼ N
(
0,L(w)†

)
, xt−1 ∼ N

(
0,L(w)†

)
The difference zt = xt − xt−1 is still a zero-mean GMRF

zt ∼ N
(
0, 2L(w)†

)
Then for T → ∞, simple (spatial) graph smoothness S(X,w) =

∑
t x

⊤
t L(w)xt would be

only a factor of the spatio-temporal smoothness ST (X,w)

1

T
S(X,w) =

1

T

∑
t

x⊤
t L(w)xt ≈ Tr

(
L(w)E[xtx

⊤
t ]
)
= Tr

(
L(w)L(w)†

)
=

1

2
Tr

(
L(w)2L(w)†

)
= Tr

(
L(w)E[ztz⊤t ]

)
≈ 1

2

1

T

∑
t

z⊤t L(w)zt =
1

2T
ST (X,w)

Conclusion

The spatio-temporal smoothness assumption works for both i.i.d. and time-dependent signals
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Proposed Method: Problem Formulation

Problem Formulation

X⋆,w⋆ =argmin
X,w≥0

f(X,w)

f(X,w) ≜ ∥Y −M⊙X∥2F + αST (X,w)− βR(w) + γ ∥w∥1

∥Y −M⊙X∥2F : Fidelity measure (similarity to the observation)
M: The missing/sampling mask
Y: Observations of the original signal: yt = mt ⊙ xt or Y = M⊙X

ST (X,w): Spatio-temporal smoothness measure: ST (X,w) = Tr
(
L(w)∆(X)∆(X)⊤

)
D: The (first order) difference matrix: D =

∑T
t=1 et−1e

⊤
t

∆(X): The (first order) difference signal with columns ∆t(X) := xt − xt−1

(∆(X) := X−DX)

R(w): Regularization term to enforce connected graph structure:

R(w) = − log det(L(w) + J), J = (1/N)11⊤

∥w∥1: Sparsity promoting term (need to apply threshold to be effective)
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Proposed Method: Solution

Optimization Algorithm:

We use block Majorization-Minimization (MM) [Sun et al. 2017] or the Block Successive
Upperbound Minimization (BSUM) [Razaviyayn et al. 2013] to solve the problem.

We have two (block) variables X and w → we have two update steps.

In each update step fix one (block) variable, and minimize a majorizer over the other
(block) variable.
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Solution: Signal (X) Update

X-subproblem

X⋆ =argmin
X

fX(X)

fX(X) =Tr
(
(Y −M⊙X)(Y −M⊙X)⊤

)
+ αTr

(
L(w)∆(X)∆(X)⊤

)
+ const.

X-update steps:
Vectorization: Restate the fX(X) in vectorized form

fX(X) = vec(X)⊤Gvec(X)− 2vec(X)⊤b+ const

G = Diag(vec(M)) + αH⊤(IT ⊗ L(w))H, H = INT −D⊤ ⊗ IN

Majorization: Find a majorizer for less complex solution (compared to inverting G)

fS
X(X;X0) = fX(X) + vec(X−X0)

⊤(θINT −G)vec(X−X0) ≥ fX(X)

A sufficient condition for this upperbound to hold is if θ > 1 + 4α ∥L(w)∥ ≥ ∥G∥
Minimization: Minimize fS

X(X;X0) for X0 = Xj to obtain X(j+1)

X(j+1) = argmin
X

fS
X(X;X(j)) = X(j) − 1

2θ
∂
∂XfX(X(j))
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Solution: Graph (w) Update

w-subproblem

w⋆ = argmin
w

fw(w)

fw(w) = Tr(L(w)K)− log det(L(w) + J), K =
1

β

(
α∆(X)∆(X)⊤ + γ/2Hoff

)
w-update steps:

First Majorization: Linear approximation of the concave function log det((L(w) + J)−1)

− log det(L(w) + J) ≤Tr
(
F0(GDiag(w̃)G⊤)−1

)
− log det(L(w0) + J)−N

Here F0 = L(w0) + J, G = [E,1], w̃ = [w⊤ 1/N ]⊤ and w0 is a fixed (previous) point
Also E = [ξ1, . . . , ξN(N−1)/2] ∈ RN×N(N−1)/2 consists of vectors ξk for

k = i− j + j−1
2

(2N − j), i > j, each of which has a +1 at the j-th position, a −1 at the
i-th position, and zeros elsewhere.
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Solution: Graph (w) Update

w-update steps:

Double Majorization!: Use an inequality from linear algebra

Tr
(
F0(GDiag(w̃)G⊤)−1

)
≤ Tr

(
F−1

0 GDiag(w̃◦2
0 ⊘ w̃)G⊤)

= ⟨w◦2
0 ⊘w,L⋆(F−1

0 )⟩+Tr
(
F−1

0 J
)

Final Majorization!!: Add
∑

i τqiw0
2
ih(wi/w0i) with h(x) = x+ 1

x − 2 ≥ 0 for x > 0

fw(w) ≤ fS
w(w;w0) ≜ τ⟨q⊙w◦2

0 ,w ⊘w0 + (w0 + 1/τ)⊘w − 2⟩+
⟨w, r⟩+Tr

(
(L(w0) + J)−1J

)
− log det(L(w0) + J)−N

Here r = L∗(K), q = L∗((Lw0 + J)−1), and τ > 0 is a constant.

Minimization: Minimize fS
w(w;w(j)) for w0 = wj to obtain w(j+1)

w(j+1) = argmin
w

fS
w(w;w(j))

= w(j) ⊙
√
(τw(j) ⊙ q+ q)⊘ (τw(j) ⊙ q+ r).
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Numerical Results (Synthetic Data)

Graph Learning
Evaluating our model for graph Laplacian L = L(w) estimation from synthetic data.
The F-score and Relative Error are used as performance metrics.

F-score =
2TP

2TP+ FP+ FN
, RelErr =

||L⋆ − L̂||F
||L⋆||F

.
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Figure: Performance of Laplacian estimation in from synthetic data at different sampling rates SR.
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Numerical Results (Synthetic Data)

Signal Recovery
Evaluating our model for graph signal X recovery from synthetic data.
The SNR and NMSE are used as performance metrics.

NMSE =
1

T

T∑
i=1

||x⋆
i − x̂i||2

||x⋆
i ||2

, SNR = 20 log10

(
||X⋆||F

||X⋆−X̂||F

)
.
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Figure: Performance of signal recovery from synthetic data at different sampling rates SR.
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Numerical Results (Real Data)

Signal Recovery
Evaluating our model for graph signal X recovery from real (US temperature) data.
The SNR and NMSE are used as performance metrics.

NMSE =
1

T

T∑
i=1

||x⋆
i − x̂i||2

||x⋆
i ||2

, SNR = 20 log10

(
||X⋆||F

||X⋆−X̂||F

)
.
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Figure: Performance of signal recovery from real (US temperature) data at different sampling rates SR.
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Numerical Results (Real Data)

Signal Recovery
Evaluating our model for graph signal X recovery from real (S&P500 stock data) data.
The SNR and NMSE are used as performance metrics.

NMSE =
1

T

T∑
i=1

||x⋆
i − x̂i||2

||x⋆
i ||2

, SNR = 20 log10

(
||X⋆||F

||X⋆−X̂||F

)
.

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.2 0.4 0.6 0.8
-5

0

5

10

15

20

Figure: Performance of signal recovery from real (S&P500 stock prices) data at different sampling
rates SR.
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Thanks!

Thanks for listening. For more information visit

www.danielpalomar.com
github.com/convexfi
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