ENERGY EFFICIENT WAKE-UP SOLUTION FOR LARGE-SCALE INTERNET OF UNDERWATER THINGS NETWORKS Abdulaziz $Al - Amodi^{1}$, Nour Kouzayha², Nasir Saeed³, Mudassir Masood^{1,4}, Tareq Y. $Al - Naffouri^{2}$.

¹King Fahd University of Petroleum and Minerals (KFUPM) ³United Arab Emirates University (UAEU)

²King Abdullah University of Science and Technology (KAUST) ⁴IRC for Communication Systems and Sensing, KFUPM

1. INTRODUCTION

- Internet of Underwater Things (IoUT) allows integration of sensing, transmission, and data aggregation, which will facilitate the exploration of the hostile aquatic environment.
- \bullet IoUT devices \rightarrow battery driven \rightarrow limited power source \rightarrow difficult to replenish
- **On-demand Wake-up radio (WuR)** proposed to substitute **Duty Cycling (DC)** to reduce energy consumption.

2. ANALYTICAL FRAMEWORK

- Performance Metrics: The proposed solution is validated through large-scale deployment, focusing on the following metrics:
- **Successful wake-up:** Probability that the IoUT device received enough power from the serving buoy to switch on.
- **False wake-up:** Probability of the total power at an IoUT device enough to wake it up, when it is not.
- Buoys and IoUT Devices Layouts: Distributed as

جامعة الإمارات العربية المتحدة United Arab Emirates University

حامعة الملك عبدالله

للعلوم والتقنية

- Duty Cycling requires regular and frequent wake-up consuming more energy.
- \Rightarrow WuR \rightarrow wake-up on demand \rightarrow significant energy reduction A mathematical framework is developed using stochastic geometry to analyze large-scale deployment.

where IoUT devices are denoted by $\Phi_s = \{x_i\}$ with $\sigma_a = \frac{10k \times W \left[\frac{L_{abs}(f) \times \ln 10 \times \sqrt[k]{\frac{\pi}{v_{\rho}T_a}}}{10k \times 5\frac{40k-S_L+100}{10k} \times 5\frac{40k-S_L+120}{10k}}\right]}$ density λ_s , whereas buoys are abstracted by Φ_h $= \{y_i\}$ with density λ_b . $\sigma_o = \frac{1}{c(\lambda)} W \left| \frac{2Hc(\lambda)P_0A_r}{T_o \left(\pi H^2 (1 - \cos\theta) + 2A_t\right)} \right|$ Distance PDF: The pdf for the 2D distance from the nearest device to the typical device served by a $\sigma_m = \sqrt[8]{\frac{\omega^2 \mu^2 N_t N_r a_t^3 a_r^3 H^2}{8T_m}}$ buoy is given as: $f_Z(z) = \int_0^z \int_{z-y}^{z+y} 4\pi \lambda_s \lambda_b z \frac{\exp(-\pi(\lambda_s x^2 + \lambda_b y^2))}{\sqrt{1 - \left(\frac{x^2 + y^2 - z^2}{2xy}\right)^2}} \, \mathrm{d}x \, \mathrm{d}y + \int_z^\infty \int_{y-z}^{y+z} 4\pi \lambda_s \lambda_b z \frac{\exp(-\pi(\lambda_s x^2 + \lambda_b y^2))}{\sqrt{1 - \left(\frac{x^2 + y^2 - z^2}{2xy}\right)^2}} \, \mathrm{d}x \, \mathrm{d}y$ The successful and false wake-up probabilities are given by: $P_s = 1 - \exp\left(-\lambda_b \pi (\sigma^2 - H^2)\right) \qquad P_f = \int f_Z(z) dz$ given by: where σ varies for acoustic, optical, and MI.

3. NUMERICAL RESULTS

- Validation: Monte-Carlo simulations affirm the analytical expressions for three distinct wake-up schemes.
- Visualization: Success probabilities are depicted with solid lines, false
- Fig. 2-Optical: Efficiency varies with device depth and beam divergence. Sea dynamics necessitate wider angles to ensure consistent connectivity.
- Fig. 3 (MI scheme): Wake-up probabilities benefit from larger coil radii,

probabilities with dashed lines, and simulations with markers.

Fig. 1-Acoustic: Success and false wake-up probabilities are influenced by frequency and device depth, showcasing better range at lower frequencies.

offering lower false wake-ups in dense networks due to attenuation.

Optimization: Acoustic methods offer range but suffer from higher energy and latency, whereas optical and MI schemes present reduced false probabilities and latency, with some range tradeoffs.

Used stochastic geometry to craft expressions for

scheme in contrast to the traditional **Duty** Cycling method.

The total energy consumed by IoUT devices using the wake-up scheme with an active percentage D_{ON} is given by:

 $E_{WuR} = \Delta t \times [(P_s D_{ON} + P_f (1 - D_{ON}))P_{ON}]$ $+((1-P_s)D_{ON}+(1-P_f)(1-D_{ON}))P_{sleep}]$

Whereas the total energy consumed by using the **DC** scheme is:

 $E_{DC} = \Delta t \times \left[D_{ON} P_{Main_ON} + (1 - D_{ON}) P_{Main_sleep} \right]$ Wake-Up Scheme: Lowers energy by activating devices only when needed \rightarrow Great for networks with lower active percentage time.

Duty Cycling: Devices stay on, consuming more power \rightarrow Not efficient for energy saving.

Fig.4. Energy consumption: Optical wake-up and the DC schemes. \mathbf{A} Network Density: More devices \mathbf{A} Higher energy use when using the wake-up scheme due to higher false alarms.

Trade-off: Wake-up scheme reduces energy use but with a slight risk of missing signals \rightarrow A balance between saving energy and connection reliability.

success and false wake-up probabilities.

Evaluated the performance evaluation of large-scale IoUT networks under various conditions.

The proposed wake-up solution resulted in reduced overall energy consumption.

6. FUTURE DIRECTION

A protective underwater case for submergence and testing in real aquatic environment Advanced circuits design for wake-up ultra-low power receivers. Explore the use of UAV-aided WuR inter-medium for communications.

