

State-Augmented Information Routing in Communication Systems with Graph Neural Networks

Sourajit Das

Dept. of Electrical and Systems Engineering

University of Pennsylvania

Email: dassour@seas.upenn.edu

Web: https://sites.google.com/view/sourajitdas

Co-Authors: Navid NaderiAlizadeh, Alejandro Ribeiro

The Next Generation Communication Networks

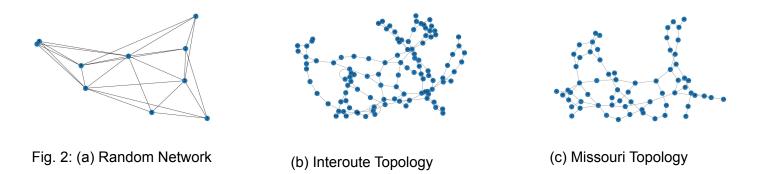
• Modern communication networks have evolved massively with the use of intelligent systems and smart devices \rightarrow 5G, WiFi 6

Fig. 1: Generated by OpenAI's ChatGPT DALL · E, Next Generation Communication Systems

- Autonomous systems can solve complexity and scalability issues in large-scale communication systems: 6G, WiFi 7
- An autonomous communication system is one which makes decisions without human intrusion

Al for Autonomy

- Making decision in communication routing involves solving large-scale constrained network optimization problems.
- Heuristic methods can solve such challenging problems but fail to adapt and generalize beyond a range of operating conditions



 Artificial Intelligence (AI) can learn efficient autonomous communications networks by leveraging on data → Machine learning algorithms

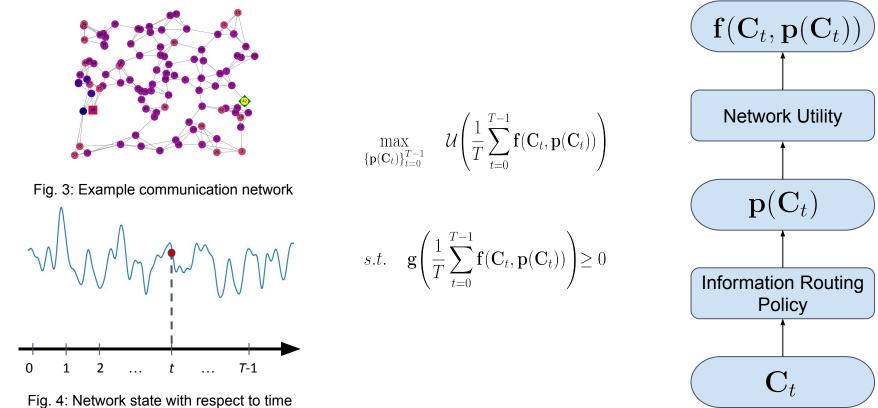
Problem Formulation

- We consider a communication network with N nodes and K flows represented as a graph $\mathscr{G}=(v,\varepsilon)$
- The performance function represents the aggregate amount of information generated at all nodes over all flows, $f(a^k(t)) = \sum \sum \log(a^k(t))$

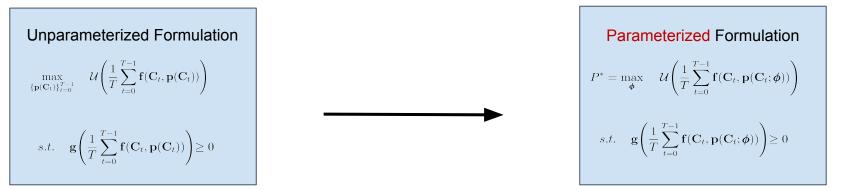
$$\mathbf{f}(a_i^k(t)) = \sum_{k \in \mathcal{K}} \sum_{i \in \mathcal{V}} \log(a_i^k(t))$$

• Considering the aggregate utility and necessary constraints, the optimization can be expressed as

Routing in Communication Networks



- At any time *t*, conventional formulation requires routing decisions to be recalculated for the given network state C_t.
 ⇒ Learning and deploying such a policy becomes infeasible to deploy in real-time.
- Solution is to parameterize the resource allocation policy, replacing $\mathbf{p}(\mathbf{C}_t)$ with $\mathbf{p}(\mathbf{C}_t; \boldsymbol{\phi})$.
- Parameterization helps in generalization and scaling to large scale networks, learn and solve problems offline.



• We utilize a Graph Neural Network (GNN) architecture to parameterize the network routing policy

- A. Dual-Descent using Lagrangian Dual
 - We consider a set of non-negative dual variables μ corresponding to the constraint g.
 - The Lagrangian can now be written as,

$$\mathcal{L}(\boldsymbol{\phi}, \boldsymbol{\mu}) = \mathcal{U}\left(\frac{1}{T}\sum_{t=0}^{T-1} \mathbf{f}(\mathbf{C}_t, \mathbf{p}(\mathbf{C}_t; \boldsymbol{\phi}))\right) + \boldsymbol{\mu}^T \mathbf{g}\left(\frac{1}{T}\sum_{t=0}^{T-1} \mathbf{f}(\mathbf{C}_t, \mathbf{p}(\mathbf{C}_t; \boldsymbol{\phi}))\right)$$

• Now the objective is to maximize the Lagrangian over ϕ while minimizing over μ ,

$$\mathcal{L}^* = \min_{oldsymbol{\mu} \geq 0} \max_{oldsymbol{\phi} \in oldsymbol{\Phi}} \ \mathcal{L}(oldsymbol{\phi},oldsymbol{\mu})$$

Cons: Primal-Dual suffers from slow convergence

- B. Method of Multipliers (MoM) using Augmented Lagrangian Dual
 - Method of Multipliers handles more general framework suitable for real-time scenarios.
 - We introduce an auxiliary variable z to convert inequality constraints to equality constraints.
- The augmented Lagrangian can now be written as,

$$\mathcal{L}_{a}(\boldsymbol{\phi},\boldsymbol{\mu},\boldsymbol{z}) = \mathcal{U}\left(\frac{1}{T}\sum_{t=0}^{T-1}\mathbf{f}(\mathbf{C}_{t},\mathbf{p}(\mathbf{C}_{t};\boldsymbol{\phi}))\right) + \boldsymbol{\mu}^{T}\left\{\mathbf{g}\left(\frac{1}{T}\sum_{t=0}^{T-1}\mathbf{f}(\mathbf{C}_{t},\mathbf{p}(\mathbf{C}_{t};\boldsymbol{\phi}))\right) - \boldsymbol{z}\right\} + \frac{\rho}{2}\left\|\boldsymbol{\mu}^{T}\left\{\mathbf{g}\left(\frac{1}{T}\sum_{t=0}^{T-1}\mathbf{f}(\mathbf{C}_{t},\mathbf{p}(\mathbf{C}_{t};\boldsymbol{\phi}))\right) - \boldsymbol{z}\right\}\right\|^{2}$$

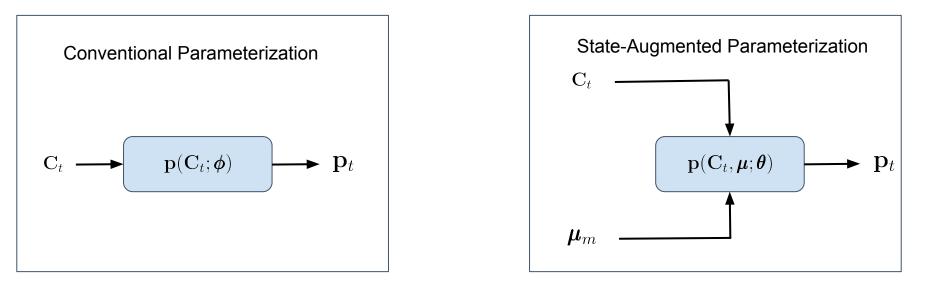
• 3 step optimization including the penalty method

$$\mathcal{L}_a(\phi, \mu) = \max_{\boldsymbol{z}} \mathcal{L}_a(\phi, \mu, \boldsymbol{z}) \longrightarrow \mathcal{L}_a^*(\phi, \mu) = \max_{\phi} \mathcal{L}_a(\phi, \mu) \longrightarrow \mathcal{L}_a^*(\phi, \mu) = \min_{\mu} \mathcal{L}_a(\phi, \mu)$$

- The primal model parameters ϕ and the dual variable μ are updated iteratively
- Let *m* be the iteration index and T_0 be iteration duration between consecutive updates

Constraint slacks are the gradient of the augmented Lagrangian with respect to the dual variables.

- We use both the network state C_t and dual variables μ as input to the network routing policy
- We use a separate parameterization θ for the state-augmented policy as $\mathbf{p}(\mathbf{C}_t, \boldsymbol{\mu}; \boldsymbol{\theta})$



• The revised augmented Lagrangian with the new parameterization can now be expressed as

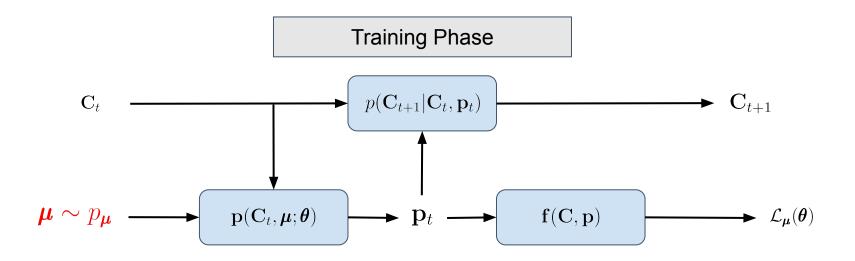
$$\mathcal{L}_{a}(\boldsymbol{\theta}) = \mathcal{U}\left(\frac{1}{T_{0}}\sum_{t=kT_{0}}^{T-1}\mathbf{f}(\mathbf{C}_{t},\mathbf{p}(\mathbf{C}_{t},\boldsymbol{\mu};\boldsymbol{\theta}))\right) + \boldsymbol{\mu}^{T}\left\{\mathbf{g}\left(\frac{1}{T_{0}}\sum_{t=kT_{0}}^{T_{0}-1}\mathbf{f}(\mathbf{C}_{t},\mathbf{p}(\mathbf{C}_{t},\boldsymbol{\mu};\boldsymbol{\theta}))\right) - \boldsymbol{z}\right\} + \frac{\rho}{2}\left\|\boldsymbol{\mu}^{T}\left\{\mathbf{g}\left(\frac{1}{T_{0}}\sum_{t=kT_{0}}^{T_{0}-1}\mathbf{f}(\mathbf{C}_{t},\mathbf{p}(\mathbf{C}_{t},\boldsymbol{\mu};\boldsymbol{\theta}))\right) - \boldsymbol{z}\right\}\right\|^{2}$$

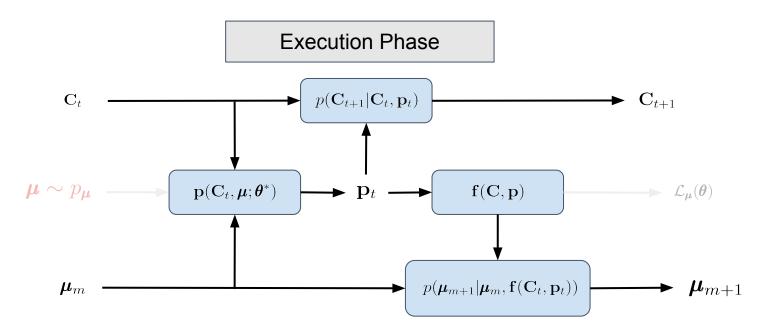
• The optimal state-augmented policy parameters are obtained during the training and saved as

$$oldsymbol{ heta}^* = rg\max_{oldsymbol{ heta}\inoldsymbol{\Theta}} \mathbb{E}_{oldsymbol{\mu}\sim p_{oldsymbol{\mu}}} ig[\mathcal{L}_{oldsymbol{\mu}}(oldsymbol{ heta})ig].$$

- This waives off the problem of re-optimizing the model parameters for every set of dual variables
- During execution, the dual variables can be updated as

$$\boldsymbol{\mu}^{m+1} = \left[\boldsymbol{\mu}^m - \rho^m \mathbf{g} \left(\frac{1}{T_0} \sum_{t=mT_0}^{(m+1)T_0 - 1} \mathbf{f}(\mathbf{C}_t, \mathbf{p}(\mathbf{C}_t; \boldsymbol{\theta}^*)) \right) \right]^+$$





• The State-Augmentation algorithm can guarantee feasibility and near optimality - Navid NaderiAlizadeh *et al*, "State-augmented learnable algorithms for resource management in wireless networks" [IEEE TSP 2022]

Performance Comparison

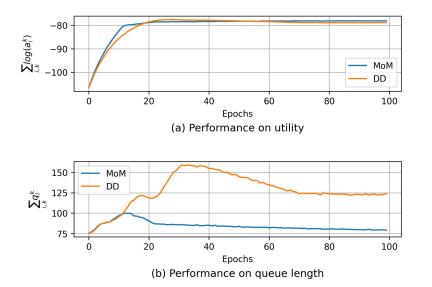
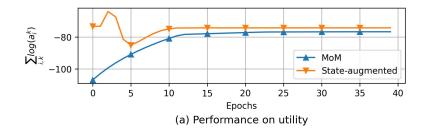


Fig. 5: Comparison of two different unparameterized methods of MoM and Dual Descent (DD) for a network with 10 nodes and 5 flows, where the network is run only for a single time step.



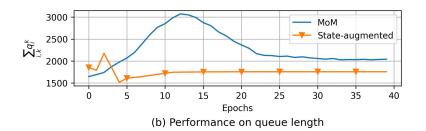


Fig. 6: Comparison of the state-augmented algorithm with MoM for a network with N= 20 nodes and F = 5 flows for T=100.

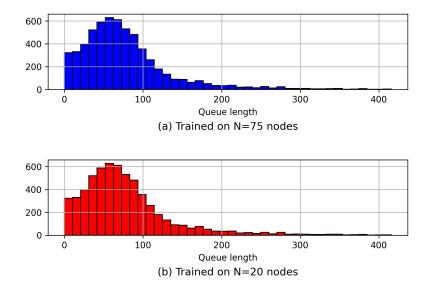


Fig. 7: Transferability of a GNN trained on networks with 20 nodes and tested on networks with 75 nodes (bottom) vs. a GNN that has been both trained and tested on 75-node networks (top).

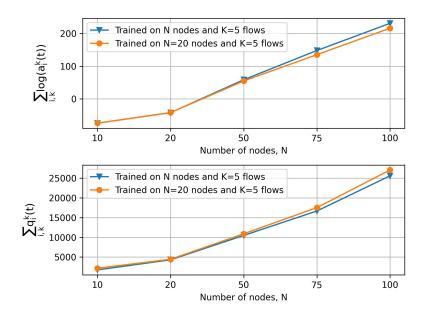


Fig. 8: Transferability of the proposed state-augmented algorithm on networks with different nodes while they were trained on a network with 20 nodes and 5 flows.

Policy Switching Behavior due to State Augmentation

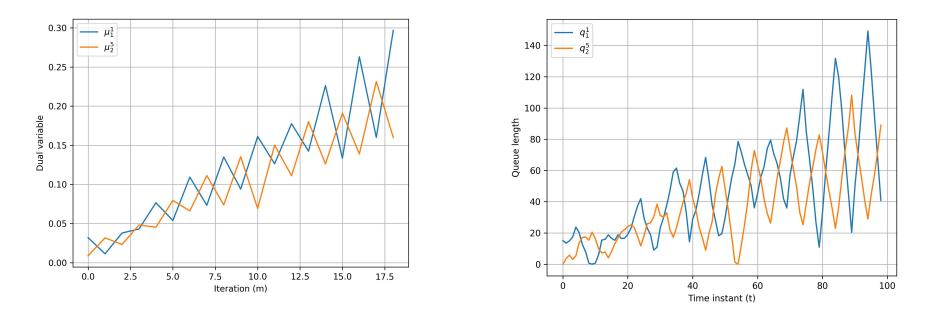


Fig. 9: Behavior of a dual variable and queue length stability for an example node in a network with 50 nodes and 5 flows.

THANK YOU !!!

Sourajit Das University of Pennsylvania Navid NaderiAlizadeh Duke University Alejandro Ribeiro University of Pennsylvania

