

Contributions of the Piriform Fossa of Female Speakers to Vowel Spectra

Congcong Zhang, Kiyoshi Honda, Ju Zhang, Jianguo Wei

Tianjin Key Laboratory of Cognitive Computation & its Applications

Tianjin University, China

Background

- > The piriform fossa is a part of the vocal tract located near the larynx.
- It offers anti-resonance to vowel spectra as a paired side branch of the vocal tract.

Background

Role of the piriform fossa

>Contributes to expressing individual vocal characteristics.

➢Helps adjust voice quality by cavity deformation.

- Dang & Honda (1997) investigated acoustic characteristics of the piriform fossa by employing the water-filling method in human experiment.
 - The piriform fossa generates anti-resonance in the narrow frequency region (4-5 kHz).
- 2. Honda, et al. (2010) built male and female vocal-tract models using MRI data and analyzed the effect of the piriform fossa on vowel spectra.
 - The female piriform fossa causes acoustic effects in the wider frequency range. Whether this is a general observation or not is uncertain.

(Honda, et al., 2010)

Lower part resonance

Vocal tract resonance

Back view of the male and female vocal tract models in the water-filling experiment

(Honda, et al., 2010)

(Honda, et al., 2010)

- Male piriform fossa causes a regional effect above 4 kHz, while the female fossa generates the wider spectral change.
- The female's fossa has the greater effect on vocal-tract resonance.

 Takemoto, et al. (2013) investigated acoustic interaction between the left and right piriform fossa using the finite-difference-time-domain (FDTD) method.

- Purpose to re-examine female piriform fossa
- 1. To explore acoustic contributions of female piriform fossa to vowel spectra.
- 2. To examine acoustic interaction between the left and right cavities of the piriform fossa.

To do so, **acoustic experiment** was conducted on **three female vocal-tract models.**

Materials and MRI data

♦ Subjects

- Three female and one male speakers of Chinese.
 - Female subject: CR, LH and SC
 - Male subject: WS (as a control)

MRI Data

- MRI vowel data
 - Synchronized scan
 - Vowels: /a/ and /i/
 - 2.0-mm slice thickness
- MRI teeth data
 - Static scan
 - 1.0-mm slice thickness

Methods

Procedure to build 3D vocal-tract models

- Extract vocal-tract shapes from MRI data
- Convert the extracted volumme into STL formant
- Build a 3-mm wall outside the vocal-tract region
- Print 3D vocal-tract models
- Software: MATLAB, Mimics.
- Device: Formlabs laser printer (0.05-mm resolution).

Methods

Experiment

Setup for acoustic experiment on the models

- Record sound signals from vocal tracts by a condenser microphone.
- Keep **10-cm distance** from the lips to the microphone.

Experiment

Acoustic recording was performed under the following four conditions:

- NF: Both cavities open (natural condition)
- LF: Left cavity filled
- RF: Right cavity filled
- BF: Both cavities filled

Acoustic Analysis

- Cepstral analysis
- Noise spectrum subtraction

Results

1. Geometry of the left and right cavities of the piriform fossa

Back views of the lower part of 3D vocal-tract models

1. Geometry of the left and right cavities of the piriform fossa

Summary

- a. Volumes of the fossa of WS (male) are larger than those in female's.
- b. CR's volumes are symmetric, while in those of others, the right side is larger.
- c. For SC's volumes, a marked difference in size between /a/ and /i/.

2. Anti-resonances of the piriform fossa in female vowel spectra

2. Anti-resonances of the piriform fossa in female vowel spectra

2. Anti-resonances of the piriform fossa in female vowel spectra

Male and female spectra with and without the piriform fossa in water-filling experiment in vowel /a/

Male: Dips are at 4-5 kHz Peaks are at 5-6 kHz

Females: Dips are at 4-6 kHz Peaks are at 6-8 kHz

3. Effect of a single cavity

Spectra with no cavities filled (red), left filled (blue) and right filled (green).

- **Q:** When one piriform fossa is filled:
- The tendency for LH /a/ may be reasonable. But in other case , they are not.
- Not only the length and Volume but also the shape influences the effect.

3. Effect of a single cavity suggests acoustic interaction.

A common pattern of the single-cavity effect

Two anti-resonance appear when one side is filled.

- Smaller anti-resonance appears at lower frequencies.
- Larger anti-resonance appears at higher frequencies.

This pattern of interaction differs from Takemoto, et al. (2013).

4. Complex acoustic interaction

A possible explanation: The piriform fossa may also interact with the laryngeal cavity.

Higher frequency region (> 4kHz) is also influenced by the laryngeal cavity (Case 1).

4. Complex acoustic interaction

A possible explanation: The piriform fossa may also interact with the laryngeal cavity.

Higher frequency region (> 4kHz) is also influenced by the laryngeal cavity (Case 2).

 Interaction among three cavities (LPF, RPF and Laryngeal cavity)

1. What were discovered.

(1) The piriform fossa of our three female subjects exhibited acoustic

effects in the frequency region higher than the male case:

- Dips are at 4-6 kHz and peaks are at 6-8 kHz.
- (2) Acoustic interaction between the left and right cavities was observed with the **tendency**:
 - Smaller anti-resonance appears at lower frequencies.
 - Larger anti-resonance appears at higher frequencies.

2. Further study

Question remained: Why acoustic interaction between the left and right cavities are varied across speakers?

Thank you !

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 61471259; No. 61573254).