

Institute of Automation Chinese Academy of Sciences Center for Research on Intelligent Perception and Computing (CRIPAC)

Interpretable Multimodal Out-of-context Detection with Soft Logic Regularization

Huanhuan Ma, Jinghao Zhang, Qiang Liu, Shu Wu, Liang Wang

Background

- **Rapid Information Spread:** Mobile devices and media platforms facilitate the fast dissemination of news, increasing the exposure to false or deceptive content.
- **Misinformation Challenges:** Misinformation, particularly out-of-context news (where images or information are shared in misleading ways), poses serious societal risks.
- Current Detection Limitations:
 - Existing methods to identify misleading information often lack transparency.
 - Many current technologies offer limited explanations for their findings, complicating efforts to build trust and understanding.
- Need for Improved Methods:
 - There is a crucial need for methods that not only detect misinformation effectively but also provide clear, interpretable reasons for their assessments.
 - Enhancing interpretability can help in educating the public and aiding analysts in combating false information.

The Task

 Image repurposing, also known as out-of-context photos are a powerful low-tech form of misinformation

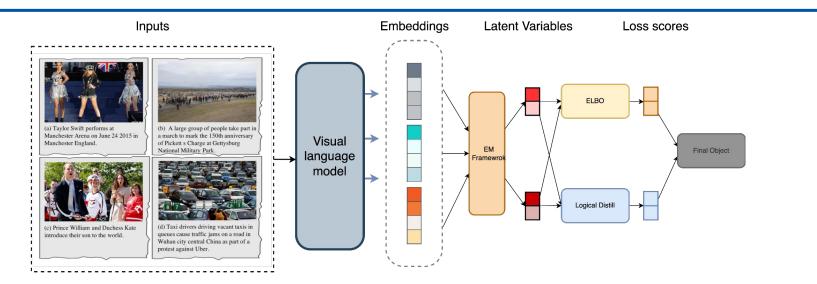
Brazillian and Colombian boxers take apart a joint training session

Brazillian and Colombian boxers take apart a joint training session

LOGic Regularization for out-of-context ANalysis (LOGRAN)

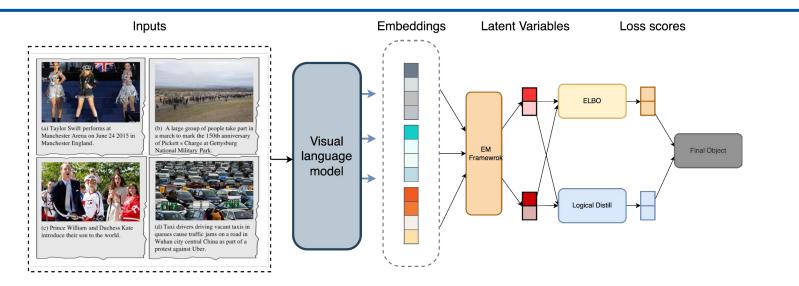


- Caption Detection Given a caption sentence c and its image I, our goal is to model the probability distribution p(y|c, I), where y ∈ {Pristine, Falsified} is a two-valued variable indicating the veracity of the caption's image.
- Phrase Detection We decompose the caption into phrases and predict the out-of-context label z_i for each caption phrase w_i ∈ W_c using the probability p(z_i| c, w_i, l), where z_i is treated as a binary latent variable z_i ∈ {Pristine, Falsified}



Follow the EM framework to model the latent variables

$$p_t(oldsymbol{y}|x) = \sum_{oldsymbol{z}} p_t(oldsymbol{y}|oldsymbol{z},x) p(oldsymbol{z}|x)$$

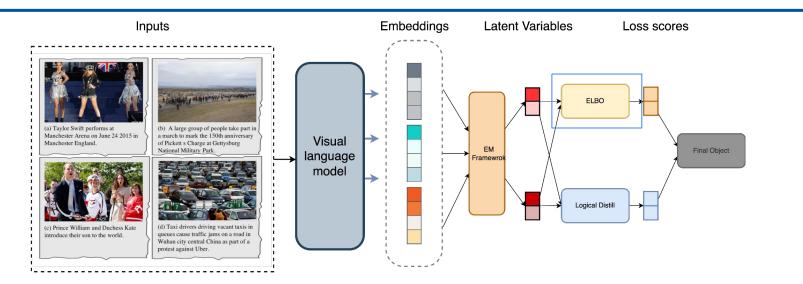


Follow the EM framework to model the latent variables

$$p_t(\boldsymbol{y}|\boldsymbol{x}) = \sum_{\boldsymbol{z}} p_t(\boldsymbol{y}|\boldsymbol{z}, \boldsymbol{x}) p(\boldsymbol{z}|\boldsymbol{x})$$

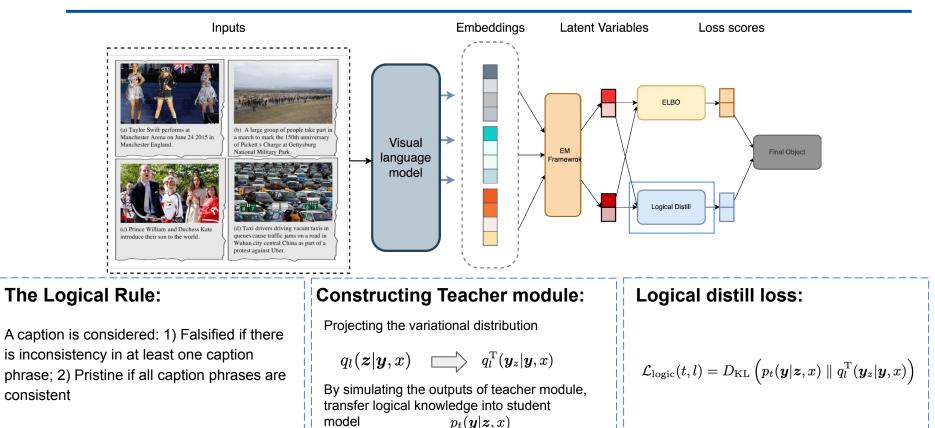
Weak supervise learning:

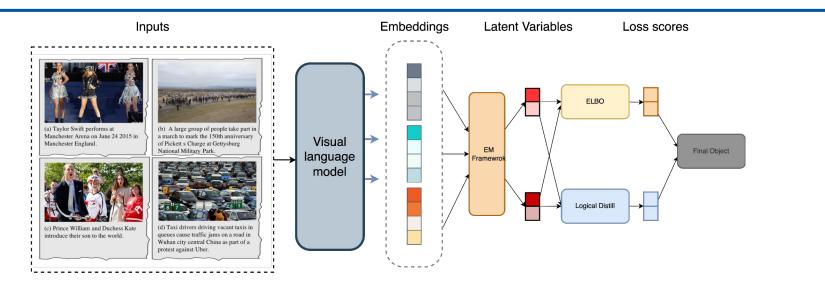
- ELBO
- Logical regularization



• ELBO loss:

 $\mathcal{L}_{ ext{var}}(t,l): \ -\mathbb{E}_{q_l}[\log p_t(y^*|oldsymbol{z},x))] + D_{ ext{KL}}(q_l(oldsymbol{z}|oldsymbol{y},x) \parallel p(oldsymbol{z}|x))$





The final loss function:

$$\mathcal{L}_{\text{final}}(t,l) = (1-\lambda)\mathcal{L}_{\text{var}}(t,l) + \lambda\mathcal{L}_{\text{logic}}(t,l)$$

Experiments

Dataset:

• **NewsCLIPpings** comprising both pristine and falsified images. It employs automation to match captions and images from the VisualNews corpus, offering various subsets based on matching methods.

Backbone model:

- **CLIP** utilizes distinct encoders for processing images and text, which are trained to produce comparable representations for associated concepts.
- **VisualBERT** is another multimodal model that integrates visual and textual information. It includes a sequence of Transformer layers that use self-attention to automatically align components of a given text input with specific regions in a corresponding image input.

Table 1. Classification accuracy on the test set for the following models: (I) VisualBERT, (II) VisualBERT with LOGRAN, (III) MultimodalCLIP, and (IV) CLIP with LOGRAN. The underlined portions represent improvements from LOGRAN

	VisualBERT	VisualBERT-LOGRAN	CLIP	CLIP-LOGRAN
(a) Semantics/CLIP Text-Image	55.12	56.88	58.59	59.03
(b) Semantics/CLIP Text-Text	53.47	<u>55.62</u>	68.36	<u>70.81</u>
(c) Person/SBERT-WK Text-Text	63.32	65.27	66.57	71.42
(d) Scene/ResNet Place	60.72	<u>62.41</u>	69.64	73.14
Merged/Balanced	61.32	<u>63.18</u>	67.27	<u>70.51</u>

Improvement observed in both backbone models, as well as across all sub-test sets.

Table 1. Classification accuracy on the test set for the following models: (I) VisualBERT, (II) VisualBERT with LOGRAN, (III) MultimodalCLIP, and (IV) CLIP with LOGRAN. The underlined portions represent improvements from LOGRAN

58.59	59.03
60.26	
68.36	70.81
66.57	71.42
69.64	73.14
67.27	<u>70.51</u>
	69.64

Improvement observed in both backbone models, as well as across all sub-test sets.

• VisualBERT vs VisualBERT-LOGRAN

The average improvement is 2%

Table 1. Classification accuracy on the test set for the following models: (I) VisualBERT, (II) VisualBERT with LOGRAN, (III) MultimodalCLIP, and (IV) CLIP with LOGRAN. The underlined portions represent improvements from LOGRAN

	VisualBERT	VisualBERT-LOGRAN	CLIP	CLIP-LOGRAN
(a) Semantics/CLIP Text-Image	55.12	56.88	58.59	59.03
(b) Semantics/CLIP Text-Text	53.47	55.62	68.36	70.81
(c) Person/SBERT-WK Text-Text	63.32	65.27	66.57	71.42
(d) Scene/ResNet Place	60.72	62.41	69.64	73.14
Merged/Balanced	61.32	63.18	67.27	70.51

Improvement observed in both backbone models, as well as across all sub-test sets.

• VisualBERT vs VisualBERT-LOGRAN

The average improvement is 2%

• CLIP vs CLIP-LOGRAN

The average improvement is 3%

Case study



We can easily identify the 'Culprit' in each case:

- New York Paris Tokyo
- Brazillian and Colombian boxers

which provides some level of interpretability

Conclusion

- We proposed a novel frame work for out-of-context detection named LOGic
 Regularization for out-of-context ANalysis (LOGRAN)
- Decomposes detection task from caption level to phrase level. Utilizes **latent variables** within an EM framework to predict out-of-context label for each phrase
- Implements two weak supervision methods: ELBO loss and logical rule regularization
- Conducted experiments on NewsCLIPpings dataset using VisualBERT and CLIP backbone models. Achieved overall performance improvement. Provides phrase-level predictions for enhanced interpretability

Thank you!