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Conte Lo Resegreh o mietioent Background

Rapid Information Spread: Mobile devices and media platforms facilitate the fast dissemination of news,
increasing the exposure to false or deceptive content.
Misinformation Challenges: Misinformation, particularly out-of-context news (where images or information
are shared in misleading ways), poses serious societal risks.
Current Detection Limitations:
e Existing methods to identify misleading information often lack transparency.
e Many current technologies offer limited explanations for their findings, complicating efforts to build
trust and understanding.
Need for Improved Methods:
e There is a crucial need for methods that not only detect misinformation effectively but also provide
clear, interpretable reasons for their assessments.
e Enhancing interpretability can help in educating the public and aiding analysts in combating false
information.
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e [mage repurposing, also known as out-of-context photos are a powerful
low-tech form of misinformation

Brazillian and Colombian boxers take apart a Brazillian and Colombian boxers take apart a
joint training session 0 joint training session Q



LOGic Regularization for out-of-context ANalysis (LOGRAN)

Caption: ( Brazillian and Colombian boxers take apart a joint training session i ° Caption Detection Given a caption
7 7~ S 77 S sentence c and its image |, our goal is
to model the probability distribution
p(y|c, 1), where y € {Pristine, Falsified}
is a two-valued variable indicating the

veracity of the caption’s image.

Image: I
e Phrase Detection We decompose the
caption into phrases and predict the
o + Latent 5 out-of-context label z for each caption
o : I  Vemiables: 5 phrase w, € W_ using the probability
eraclty X * e ' Phrase 5 p(z|c, w, 1), where z is treated as a
Prediction 1 ' e B BTG 1 Veracity ' . . T
' % : ! blnaw Iatent variable ziE {Pristine,

____________ Overall Veracity Y: RUANERI1212)D) E FaISIﬂed}
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Embeddings Latent Variables Loss scores
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Follow the EM framework to model the latent variables

pe(ylz) =Y pe(ylz, z)p(z|x)
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Embeddings Latent Variables Loss scores

(c) Prince William and Duchess Kate (d) Taxi drivers driving vacant taxis in
introduce their son to the world. queues cause traffic jams on a road in

Wahan city central China as part of a \ /
protest against Uber.
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Follow the EM framework to model the latent variables Weak supervise learning:

e ELBO
pe(ylz) =Y pe(ylz, z)p(z|x) e Logical regularization
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The Framework

() Taylor Swift performs at
Manchester Arena on June 24 2015 in
Manchester England.

(b) A large group of people take part in
a march to mark the 150th anniversary
of Pickett s Charge at Gettysburg
National Military Park.

(¢) Prince William and Duchess Kate
introduce their son to the world.

ELBO loss:

Lyar(t,1):

(d) Taxi drivers driving vacant taxis in
queues cause traffic jams on a road in
Wahan city central China as part of a
protest against Uber.

Visual
language
model

Embeddings

Latent Variables

EM

Loss scores

Logical Distill

—Eq logp(y”|2, 2))] + Dxr(a(2ly, z) || p(2]z))
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The Framework

(a) Taylor Swift performs at
Manchester Arena on June 24 2015 in
Manchester England.

National Military Park.

(b) A large group of people take part in
amarch to mark the 150th anniversary
of Pickett s Charge at Gettysburg

(c) Prince William and Duchess Kate
introduce their son to the world.

protest against Uber.

The Logical Rule:

A caption is considered: 1) Falsified if there
is inconsistency in at least one caption
phrase; 2) Pristine if all caption phrases are
consistent

(d) Taxi drivers driving vacant taxis in
queues cause traffic jams on a road in
Wuhan city central China as part of a

ql(z|y,m)

By simulating the outputs of teacher module,
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Inputs Embeddings Latent Variables Loss scores

(c) Prince William and Duchess Kate (d) Taxi drivers driving vacant taxis in

introduce their son to the world.

queues cause traffic jams on a road in
Wuhan city central China as part of a
protest against Uber.
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The final loss function:

Lﬁnal(t, l) = (1 — )\)ﬁvar(t, l) -+ )\Elogic (t, l)
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Dataset:

e NewsCLIPpings comprising both pristine and falsified images. It employs
automation to match captions and images from the VisualNews corpus, offering
various subsets based on matching methods.

Backbone model:

e CLIP utilizes distinct encoders for processing images and text, which are trained to
produce comparable representations for associated concepts.

e VisualBERT is another multimodal model that integrates visual and textual
information. It includes a sequence of Transformer layers that use self-attention to
automatically align components of a given text input with specific regions in a
corresponding image input.
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Table 1. Classification accuracy on the test set for the following models: (I) VisualBERT, (II) VisualBERT with LOGR AN, (IIT) Multimodal
CLIP, and (IV) CLIP with LOGRAN. The underlined portions represent improvements from LOGRAN

VisualBERT  VisualBERT-LOGRAN | CLIP CLIP-LOGRAN
(a) Semantics/CLIP Text-Image 55.12 56.88 58.59 59.03
(b) Semantics/CLIP Text-Text 53.47 53.62 68.36 70.81
(c) Person/SBERT-WK Text-Text 63.32 65.27 66.57 71.42
(d) Scene/ResNet Place 60.72 62.41 69.64 73.14
Merged/Balanced 61.32 63.18 67.27 70.51

Improvement observed in both backbone models, as well as across all sub-test sets.
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Table 1. Classification accuracy on the test set for the following models: (I) VisualBERT, (II) VisualBERT with LOGR AN, (IIT) Multimodal
CLIP, and (IV) CLIP with LOGRAN. The underlined portions represent improvements from LOGRAN

' VisualBERT  VisuaBERT-LOGRAN | CLIP CLIP-LOGRAN
(a) Semantics/CLIP Text-Image | 55.12 56.88 | 58.59 59.03
(b) Semantics/CLIP Text-Text | 53.47 53.62 | 68.36 70.81
(c) Person/SBERT-WK Text-Text |  63.32 65.27 i 66.57 71.42
(d) Scene/ResNet Place | 60.72 62.41 | 69.64 73.14
Merged/Balanced | 61.32 63.18 : 67.27 70.51

Improvement observed in both backbone models, as well as across all sub-test sets.

e VisualBERT vs VisualBERT-LOGRAN
The average improvement is 2%



. CRIPAC
& BB STHEF R : :
0% Fercoionsnacommenns " Results and Discussion

Table 1. Classification accuracy on the test set for the following models: (I) VisualBERT, (II) VisualBERT with LOGR AN, (IIT) Multimodal
CLIP, and (IV) CLIP with LOGRAN. The underlined portions represent improvements from LOGRAN

|

Visual BERT  Visual BERT-LOGRAN : CLIP CLIP-LOGRAN |

(a) Semantics/CLIP Text-Image 55.12 56.88 1 58.59 59.03 |
(b) Semantics/CLIP Text-Text 53.47 53.62 | 68.36 70.81 |
(c) Person/SBERT-WK Text-Text 63.32 65.27 | 66.57 71.42 |
(d) Scene/ResNet Place 60.72 62.41 | 69.64 73.14 |
Merged/Balanced 61.32 63.18 : 67.27 70.51 i
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Improvement observed in both backbone models, as well as across all sub-test sets.

e VisualBERT vs VisualBERT-LOGRAN
The average improvement is 2%

e CLIPvs CLIP-LOGRAN
The average improvement is 3%
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w 01728082711 Ve can easily identify the

ws [0.056, 0.944] wy[0.1333,08666)  Culprit’ in each case:
i ws [0.008, 0.992] ws [0:6086, 0.3913]

wy [0.007, 0.993] m w, (016092, 0.3908] e New York Paris Tokyo
ws [0.006, 0994]EE| I IR v, (DR, 0.2771] e Brazillian and Colombian

wy [0.017, 0.983]

...................................................................

boxers
w1 [0.1476, 0.8524] wy (888, 0.1167] which provides some level of
w3 [0.0485, 0.9515] w,[0.2185, 0.7815] interpretability

w3[0.0846, 0.9154] w3 [0.3446, 0.6554]
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e We proposed a novel frame work for out-of-context detection named LOGic
Regularization for out-of-context ANalysis (LOGRAN)

e Decomposes detection task from caption level to phrase level. Utilizes latent
variables within an EM framework to predict out-of-context label for each
phrase

e Implements two weak supervision methods: ELBO loss and logical rule
regularization

e Conducted experiments on NewsCLIPpings dataset using VisualBERT and
CLIP backbone models. Achieved overall performance improvement.
Provides phrase-level predictions for enhanced interpretability
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