

Deep Neural Network for Robust Speech Recognition With Auxiliary Features From Laser-Doppler Vibrometer Sensor

Zhipeng Xie^{1,2}, Jun Du¹, Ian McLoughlin³ Yong Xu², Feng Ma², Haikun Wang²

1 National Engineering Laboratory for Speech and Language Processing

2 Research Department, iFLYTEK Co. LTD.

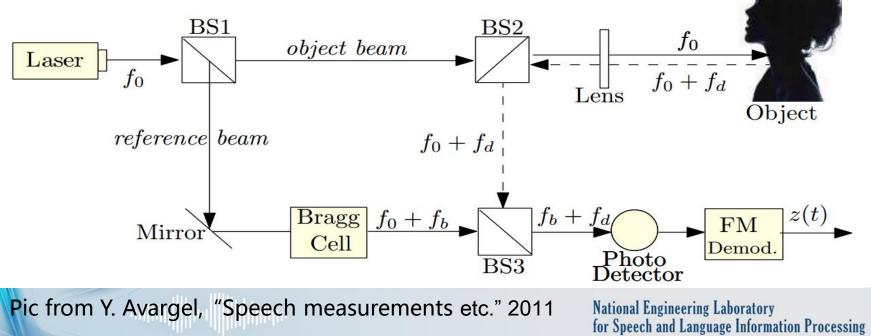
3 School of Computing, University of Kent, Medway, UK

October 18, 2016

University of Science and Technology of China USTC iFLYTEK CO.,LTD.

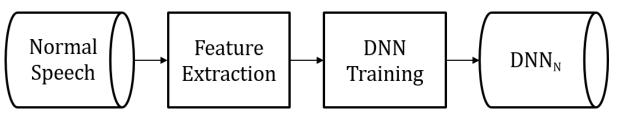
Outline

Introduction

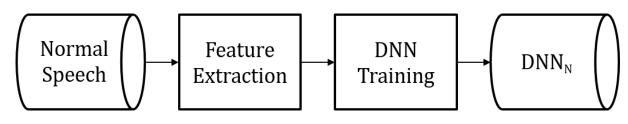

- Proposed Methods
- Experimental Results
- Conclusion

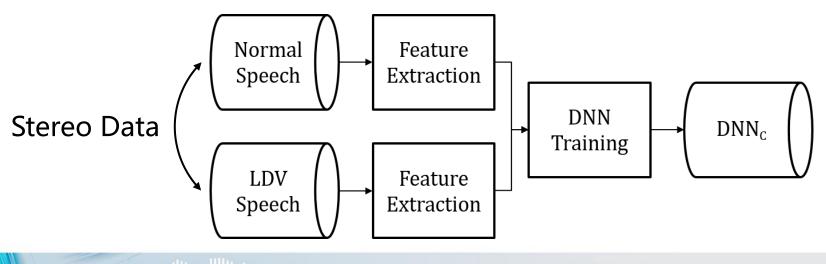
Introduction

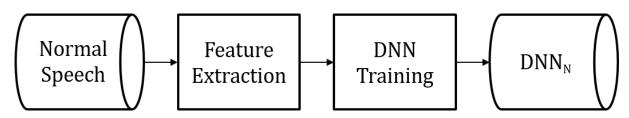
- Robust ASR using DNN
- Laser-Doppler Vibrometer (LDV) Sensor
 - Directed to speaker's larynx, non-contact
 - Measure the vibration velocity
 - Immune to acoustic interference

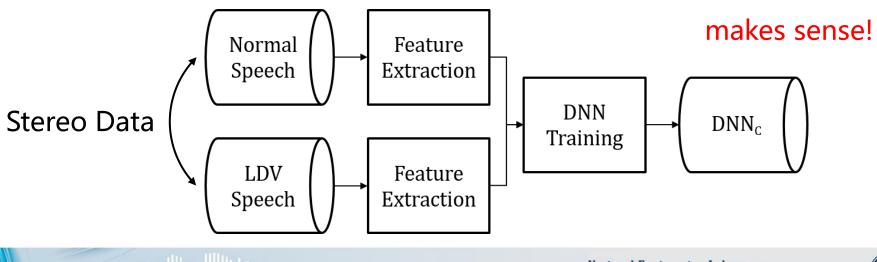

Outline

- Introduction
- Proposed Methods
- Experimental Results
- Conclusion


LDV Feature Combination(Limited dataset)
 – Normal speech




LDV Feature Combination(Limited dataset)
 – Normal speech


– Normal + LDV speech

LDV Feature Combination(Limited dataset)
 – Normal speech

– Normal + LDV speech

Proposed Limited LDV dataset \rightarrow validated

Large dataset (Normal real-life speech)

Proposed Limited LDV dataset → validated

Large dataset (Normal real-life speech)

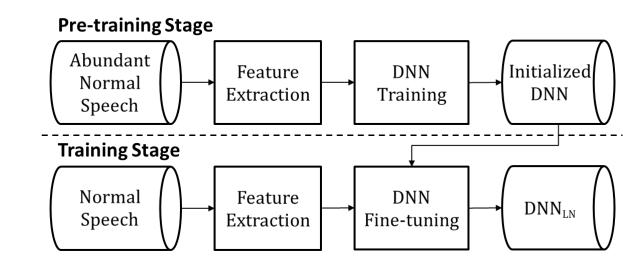
a) How to use these valuable data?

- Well-trained DNN for initialization

Proposed Limited LDV dataset → validated

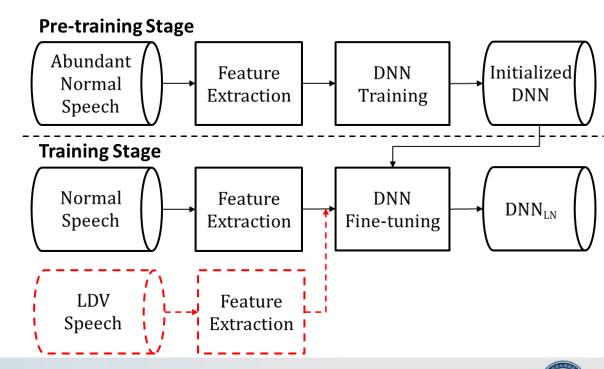
Large dataset (Normal real-life speech)

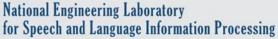
a) How to use these valuable data?

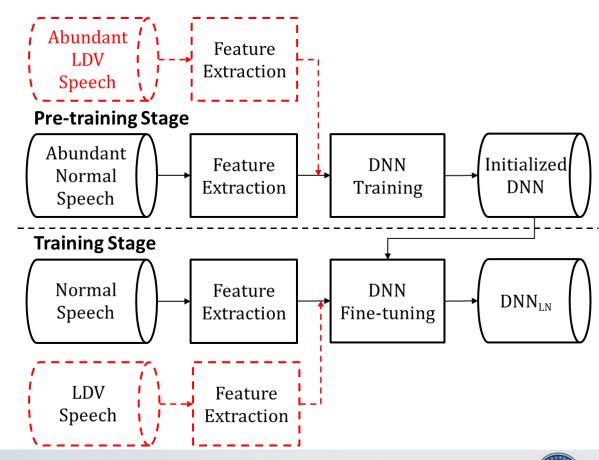

- Well-trained DNN for initialization

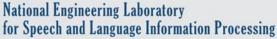
b) How to get corresponding LDV feature?

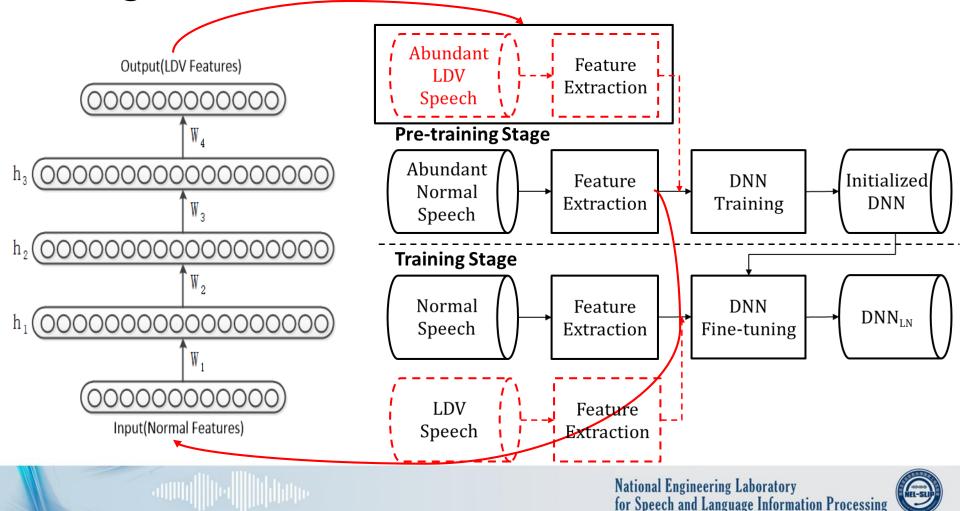
- Mapping network: regression DNN



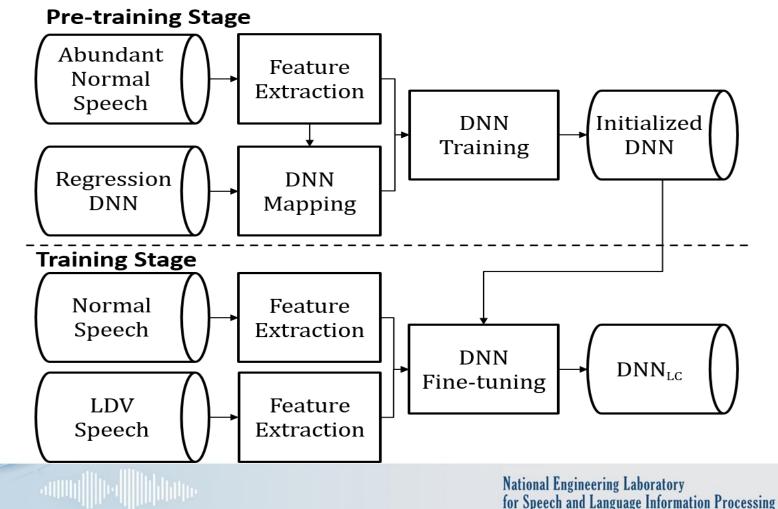

• Large dataset to train DNN for initialization




• Large dataset to train DNN for initialization



• Large dataset to train DNN for initialization



- Large dataset to train DNN for initialization
- Regression DNN

- Large dataset to train DNN for initialization
- Regression DNN

Outline

- Introduction
- Proposed Methods
- Experimental & Results
- Conclusion

Experiments

- Corpus
 - LDV dataset

No.	Car Speed	Window	Outside	AC
1	stationary	closed	downtown	middle
2	stationary	open	car park	off
3	≤40km/h	closed	downtown	off
4	41-60 km/h	closed	countryside	middle
5	80-120 km/h	closed	highway	middle

Total: 13k recordings in 16 kHz, 16 bits Speakers from: U.S. , Hebrew Training: 54 speakers \rightarrow 9.9h Development set: 4 speakers \rightarrow 0.62h Test set: 4 speakers \rightarrow 0.75h

CZ dataset

Total: 66k recordings in 16 kHz, 16 bits \rightarrow 620h Speakers from: U.S. , England, Canada Replayed in Toyota, Volkswagen and BMW

Experiments

- Experimental settings
 - Features
 - 72-dim LMFB (24 + Δ + $\Delta\Delta$)
 - 10 neighboring frames (± 5 frames)
 - Acoustic-only Feature: 72*11 = 792-dim
 - Combining Feature: 72*2*11 = 1584-dim
 - Acoustic DNN
 - 6 hidden layers with 2048 nodes State numbers: 9004 (senones of HMM)
 - Regression DNN
 2 hidden layers with 2048 nodes
 From normal speech feature to LDV feature
 Structure: 792-2048-2048-792

System	Feature_dim	SER	WER
DNN _N	72	89.71%	58.88%
DNNc	144	84.27%	52.42%

Table 2: Results of LDV feature combination

75.00% 70.00% 65.00% 60.00% 55.00% 50.00% 45.00% clean noisy

Fig 3: Results of LDV feature combination in different environment conditions

• LDV data helps

System	Feature_dim	SER	WER
DNN _N	72	89.71%	58.88%
DNNc	144	84.27%	52.42%

Table 2: Results of LDV feature combination

75.00% 70.00% 65.00% 60.00% 55.00% 50.00% 45.00% clean noisy

Fig 3: Results of LDV feature combination in different environment conditions

• LDV data helps

System	Feature_dim	SER	WER
DNN _N	72	89.71%	58.88%
DNNc	144	84.27%	52.42%

Table 2: Results of LDV feature combination

 Image: None of the i

Fig 3: Results of LDV feature combination in different environment conditions

System	Feature_dim	WER
	72	32.93%
DNN _{LC}	144	26.13%
joint-DNN _{LC}	144	25.22%

75.00%

Table 3: Results of the systems with larger dataset for DNN initialization

• LDV data helps

System	Feature_dim	SER	WER
DNN _N	72	89.71%	58.88%
DNNc	144	84.27%	52.42%

Table 2: Results of LDV feature combination

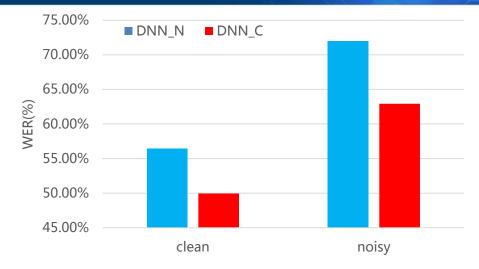


Fig 3: Results of LDV feature combination in different environment conditions

More data for initialization, better performance

System	Feature_dim	WER
	72	32.93%
DNN _{LC}	144	26.13%
joint-DNN _{LC}	144	25.22%

Table 3: Results of the systems with larger dataset for DNN initialization

Outline

- Introduction
- Proposed Methods
- Experimental Results
- Conclusion

Conclusion

- New & Interesting Idea:
 - LDV + normal speech combination
 - Well-trained DNN for initialization
 - Regression network to get corresponding pseudo-LDV feature

Conclusion

- New & Interesting Idea:
 - LDV + normal speech combination
 - Well-trained DNN for initialization
 - Regression network to get corresponding pseudo-LDV feature
- Future work:
 - Practical use in daily life
 - More LDV data
 - Other recognition methods

Thanks & Questions

National Engineering Laboratory for Speech and Language Information Processing

