Detecting Check-Worthy Claims in Political Debates, Speeches, and Interviews Using Audio Data SOFIA UNIVERSITY St. Kliment Ohridski

Petar Ivanov¹ Ivan Koychev¹ Momchil Hardalov² Preslav Nakov³ ¹Sofia University "St. Kliment Ohridski" ²AWS AI Labs ³Mohamed bin Zayed University of Artificial Intelligence

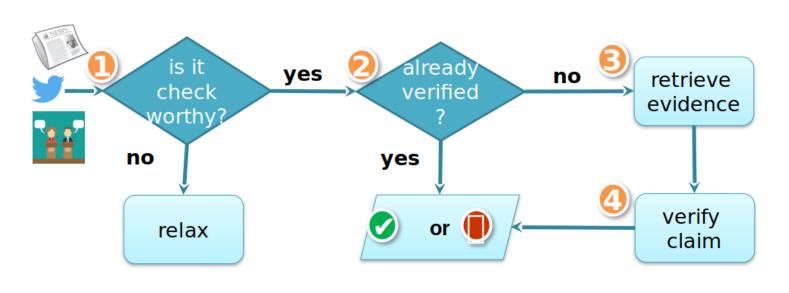
✓ peturoi@uni-sofia.bg, koychev@fmi.uni-sofia.bg, momchilh@amazon.com, preslav.nakov@mbzuai.ac.ae

Motivation

OHAMED BIN ZAYED

NTELLIGENCE

aws


Fake news and mis/disinformation are booming. While accumulating support, politicians sometimes resort to distorting or hiding the truth, unintentionally or on purpose. Manual fact-checking is the most common and trustworthy way to fight this, but it is tedious and time-consuming. Hence, it is important to prioritize what to fact-check, i.e., to estimate the check-worthiness of the claims.

Objective

Given a political debate, a speech or an interview, rank the sentences according to their check-worthiness. As this is a ranking task, we use Mean Average Precision (MAP) for evaluation.

Contributions

- A multimodal dataset (text and audio) for detecting check-worthy claims.
- A novel framework that combines the text and the speech modalities.
- Evaluation and comparison of current state-of-the-art textual and audio models on our multimodal dataset.

The general fact-checking flow-chart

The focus of our work is the first step from the fact-checking flowchart: detecting check-worthy claims. Previous work has focused exclusively on the text modality, but here we explore the utility of the audio as an additional input.

Joint Models

Textual and audio models are combined in several different ways:

- **Knowledge alignment** we train an audio model to represent the input it receives in the same way a fine-tuned textual model would represent its input in a teacher-student mode.
- Early fusion ensemble we take fine-tuned models, run the inputs with the respective modalities through them and combine their input representations which in term goes through a classification layer.
- Late fusion ensemble we combine the predictions of the models.

Line #	Speaker	Sentence	Check-worthy?
146	Pence	But Hillary Clinton and Tim Kaine want to build on Obamacare.	No
147	Pence	They want to expand it into a single-payer program.	Yes
842	Kaine	The Clinton Foundation is one of the highest-rated charities in the world.	No
843	Kaine	It provides AIDS drugs to about 11.5 million people.	Yes

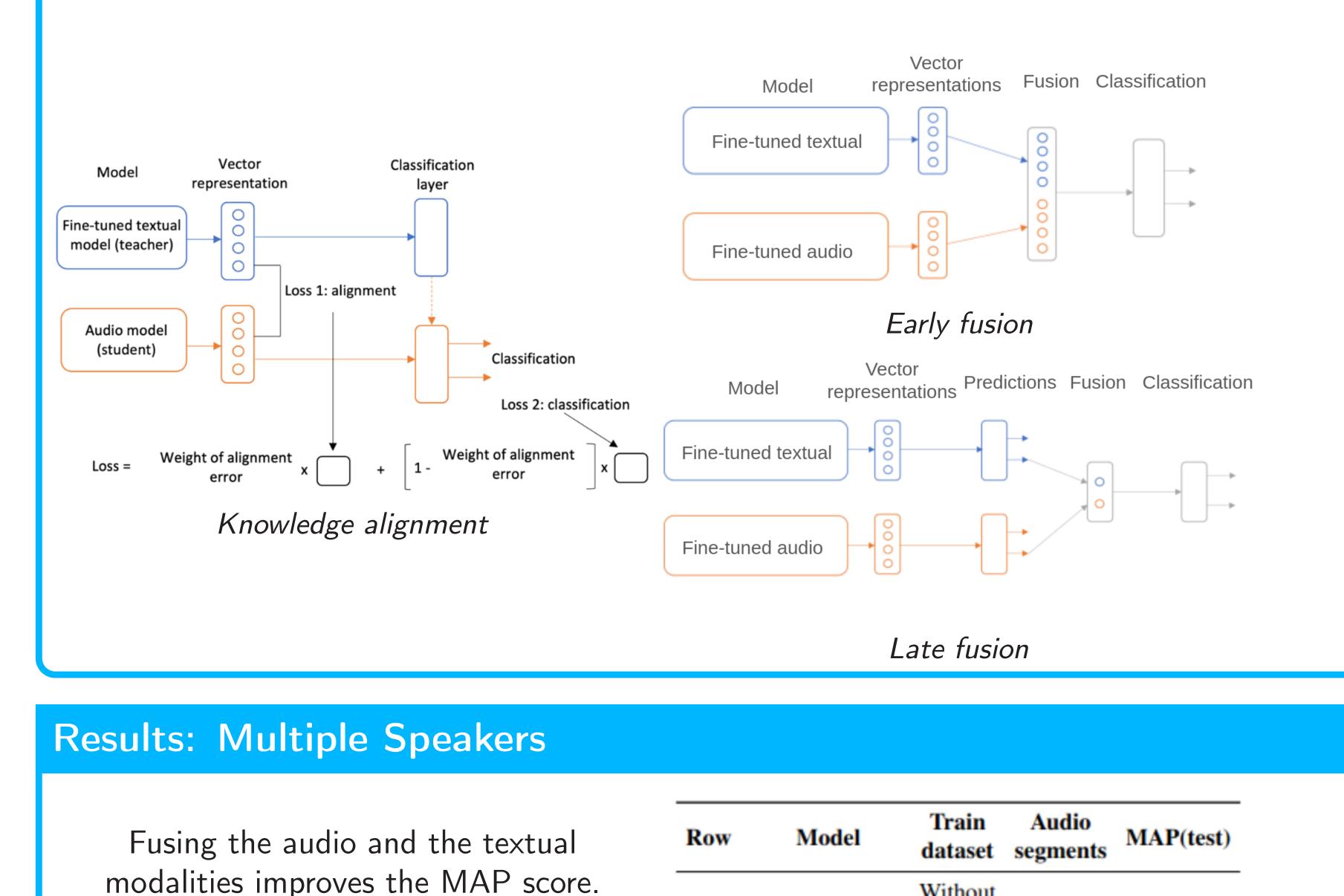
Political debate transcript

Line #	Speaker	Sentence	Check-worthy?
843	Kaine	It provides AIDS drugs to about 11.5 million people.	Yes
147	Pence	They want to expand it into a single-payer program.	Yes
842	Kaine	The Clinton Foundation is one of the highest-rated charities in the world.	No
146	Pence	But Hillary Clinton and Tim Kaine want to build on Obamacare.	No

Ranked claims from debate

- **Positive results Multiple speakers**: adding the audio modality yields sizable improvements over using the text modality alone.
- **single speaker**: an audio-only model could outperform a strong text-only baseline.

Data


We augment the dataset for the 2021 CheckThat! lab, Task 1b. Our new multimodal dataset (text and audio in English) contains 48 hours of speech in English, comprising 34,489 sentences.

Modality	CheckThat!'21 Text Only	Our Dataset Text + Audio
Train		
# events	40	38
# sentences	42,033	28,715
# check-worthy claims	429	417
Dev		
# events	9	7
# sentences	3,586	1,896
# check-worthy claims	69	40
Test		
# events	8	8
# sentences	5,300	3,878
# check-worthy claims	298	291
All		
# events	57	53
# sentences	50,919	34,489
# check-worthy claims	796	748

	Original	x15	x30	1:1
# non-check-worthy	28,298	28,298	28,298	417
# check-worthy claims	417	6,672	12,927	417
Check-worthy claims	1.5%	19.1%	31.4%	50.0%

Train data with over- and undersampling

	Train	Dev	Test	All
# sentences	8,191	1,650	3,489	13,330
# check-worthy claims	213	39	278	530
Check-worthy claims	2.6%	2.4%	8.0%	4.0%

Multimodal dataset

Single speaker dataset

The check-worthy claims in the multimodal dataset are about 2% of all sentences. Thus, we prepared three variants of the training dataset: upsampling 15 and 30 times, removing random non-check-worthy sentences until their number becomes equal to the number of the check-worthy ones.

We propose a single-speaker setup, leaving aside the speech specifics of the different speakers.

In addition, we prepare a variant of the sentence-level audio segments with reduced background noise.

Models

- Text models:
- BERT-base uncased
- SVM with TF.IDF
- Feedforward network focusing on named entities

Audio models (base variants):

- HuBERT

Rov	w Mo	del	Train dataset	MAP(test)	
1	BEI	BERT			
2		TF.IDF x15			
3	Feedforward network with named entities count x15 22.28				
			lel results		
Row		ual mod Train	Audio	MAP(test	
	Text. Model	ual mod Train dataset	Audio segments		
Row	Text Model HuBERT	ual mod Train dataset x30	Audio segments Original	25.26	
	Text. Model	ual mod Train dataset	Audio segments		

Audio model results

1	data2v	ec-audio	With chan		Original	29.99
2	wav2vec 2.0		Without changes Of		Original	29.96
3	Huł	BERT	With chan		Original	27.87
	Kno	owledge	alig	gnme	nt result	ts
Row	Ensemble type	Model	l	Train datase	Audio t segments	MAP(test)
Row 1		Model BERT & HuBER	ŝć.		t segments	MAP(test) 38.17
	type Early	BERT &	κ T x	datase Withou	t segments	
1	type Early fusion Late	BERT & HuBER	ů T X T Ž	datase Withou change x15 Withou	t segments t Original Original t Original	38.17
1	type Early fusion Late fusion Early	BERT & HuBER BERT & HuBER	k T T k 12vec k	datase Withou change x15 Withou	t segments t Original Original t Original	38.17 37.58

• wav2vec 2.0

• data2vec-audio

Results: Single Speaker

Experiments with the single-speaker subset of the dataset. The audio model using audio segments with reduced background noise achieves the highest MAP, outperforming the best textual model.

Row	Model	MAP(test)
1	BERT	32.67
2	TF.IDF	26.93
3	Feedforward network with named entities count	21.93

Row	Model	Audio segments	MAP(test)
1	wav2vec 2.0	Reduced noise	34.27
2	HuBERT	Original	24.78
3	data2vec-audio	Reduced noise	21.29

Audio model results

Ensemble results