Performance Analysis of a DF based Dual Hop Mixed RF-FSO System with a Direct RF Link

Sanya Anees$, Priyanka Meena* and Manav R. Bhatnagar#

$Bharti School of Telecommunication Technology & Management
&
*##Department of Electrical Engineering
Indian Institute of Technology Delhi, New Delhi, India

December 13, 2015
1. Introduction
2. Problem Approached
3. Statistical Characteristics
4. Performance Metrics
5. Numerical Results
6. References
Motivation

- "Wireless" synonymous to RF technologies
- RF band is limited, licensed, and costly
- Free Space Optical Communications (FSO) / Optical Wireless Communication (OWC) → transmission in unguided propagation media through use of optical carriers, i.e., visible, IR, and UV band.

Figure: Electromagnetic spectrum
FSO: Advantages

- High rate communication over distances up to several kilometers (10 Gbps)
- FSO systems use very narrow laser beams ➞ inherent security and robustness to electromagnetic interference.
- Frequency used is above 300 GHz which is unlicensed worldwide.
- FSO systems are also easily deployable and can be reinstalled without the cost of dedicated fiber optic connections.
- Efficient solution for the "last mile" problem to bridge the gap between the end user and the backbone network.
- Enterprise/campus connectivity
- Video surveillance and monitoring
FSO : Applications I

FSO communication can be potentially employed in a diverse range of communication applications. Based on the transmission range, OWC can be studied in five categories -

- **Ultra-short range OWC** (chip-to-chip communications in stacked and closely-packed multi-chip packages)

- **Short range OWC** (wireless body area network (WBAN) and wireless personal area network (WPAN) applications, underwater communications)

 Example: Disaster Recovery, e.g., 9/11 Terrorist Attacks in NY City when financial corporations were left out with no landlines.
FSO: Applications II

- Medium range OWC (indoor IR and VLC for wireless local area networks (WLANs), inter-vehicular and vehicle-to-infrastructure communications)

- Long range OWC (inter-building connections)
 Example: Broadcasting of live events, e.g., during 2010 FIFA World Cup, BBC deployed FSO links for Ethernet-based transport of HD video between studio locations setup in South Africa.

- Ultra-long range OWC (inter-satellite links and deep space links)
FSO: Limitations

The performance of FSO systems is strongly AFFECTED by:

- Atmospheric Turbulence/Scintillations: variations in temperature and pressure of atmosphere \implies variations in the refractive index along the transmission path \implies channel fading.

- ATMOSPHERIC LOSS: Rain, snow, fog, pollution, dust, smoke, etc absorb laser light energy attenuating optical power of the signal and cause light scattering.

- MISALIGNMENT LOSS or POINTING ERRORS \implies building sway phenomenon due to thermal expansion, earthquakes, etc.
FSO: Solutions

- Radio on FSO (RoFSO)
- MIMO-FSO
- Hybrid RF/FSO
- Asymmetric RF-FSO
- Serial FSO

Cooperation protocols
- Amplify-and-forward (AF)
- Decode-and-forward (DF)

Cooperative communication provides
- High reliability and fading mitigation
- Performance enhancement
- Broad and energy-efficient coverage area
In [S. Anees and M. R. Bhatnagar, IET Optoelectronics, 2015] Outage, BER, and capacity analysis for DF based asymmetric RF-FSO systems, where RF link \(\Rightarrow\) Nakagami distribution and FSO link \(\Rightarrow\) Gamma-Gamma turbulence & pointing errors.

In [I. S. Ansari, M. S. Alouini, and F. Yilmaz, IEEE VTC, 2013] BER analysis of fixed gain AF based mixed RF-FSO system, where RF link \(\Rightarrow\) Rayleigh distribution and FSO link \(\Rightarrow\) Gamma-Gamma turbulence & pointing errors and a direct RF link \(\Rightarrow\) Rayleigh distribution.

Figure: System Model of DF based dual-hop mixed RF-FSO system with a direct RF link.
Problem Statement

- Information theoretic analysis of DF based dual hop mixed RF-FSO communication system, where
 - S-R link is characterized by Nakagami-m distributed fading
 - R-D link is characterized by Gamma-Gamma distributed turbulence and pointing error
 - S-D link is characterized by Nakagami-m distributed fading
- The system uses SC at the receiver; it selects the link with maximum SNR
- The system uses SIM scheme and direct mode of detection
System model III

- Signal received by R and D from S:

\[y_{s,q} = h_{s,q}x + e_{s,q} \]

* \(q \in \{r, d\} \)
* \(x \) denotes the signal transmitted by S
* \(h_{s,q} \) denotes the Nakagami-\(m \) distributed channel gain
* \(e_{s,q} \) denotes zero-mean AWGN noise with \(\sigma^2_{s,q} \) variance

- Signal received by D after optical-to-electrical conversion from S over the FSO link:

\[y_{r,d} = \eta_{r,d}l_{r,d}\hat{x} + e_{r,d} \]

* \(l_{r,d} \) is the real-valued Gamma-Gamma distributed irradiance
* \(\eta_{r,d} \) is optical-to-electrical conversion coefficient
* \(e_{r,d} \) denotes zero-mean AWGN noise with \(\sigma^2_{r,d} \) variance
System model IV

- For a DF based mixed RF/FSO system without a direct link, the end-to-end signal-to-noise (SNR) \((\gamma_{s,r,d})\)

 \[\gamma_{s,r,d} \approx \min(\gamma_{s,r}, \gamma_{r,d}) \]

- The instantaneous received SNR at D:

 \[\gamma_z = \max(\gamma_{s,d}, \gamma_{s,r,d}) \]
Channel Model I : RF Link

Assuming the fading of RF link to be Nakagami-m distributed, the PDF of $\gamma_{s,q}$ will be Gamma distributed

$$f_{\gamma_{s,q}}(\gamma) = \frac{m_{s,q}^{m_{s,q}} \gamma^{m_{s,q}-1}}{\Gamma(m_{s,q}) \bar{\gamma}_{s,q}^{m_{s,q}}} \exp \left(- \frac{m_{s,q} \gamma}{\bar{\gamma}_{s,q}} \right),$$

* $m \geq 1/2$ is the Nakagami parameter
PDF of $\gamma_{r,d}$ for direct detection

\[
f_{\gamma_{r,d}}(\gamma) = \frac{\xi^2}{2\gamma \Gamma(a) \Gamma(b)} G^{3,0}_{1,3} \left(\frac{\gamma}{\gamma_{r,d}} \left| \frac{\xi^2 + 1}{\xi^2} \right. \right)
\]

- $\gamma = \frac{\gamma_{r,d}}{I_0 A_0 \rho}$
- $f = \frac{\xi^2}{\xi^2 + 1}$
- $\xi = \frac{w_e}{2\sigma_s}$
- w_e is the equivalent beamwaist
- σ_s is the pointing error displacement standard deviation at the receiver
- $G(\cdot)$ is the Meijer-G function
CDF:

\[
F_{\gamma_{s,r,d}}(\gamma) = 1 - \left(1 - \mathcal{K}_1 \gamma \left(m_{s,r}, \frac{m_{s,r} \gamma}{\bar{\gamma}_{s,r}} \right) \right) \\
\times \left(1 - \mathcal{K}_2 G_{3,7}^6,1 \left(\mathcal{W}_{\gamma} \left| \begin{array}{c} 1, \mathcal{P}_1 \\ \mathcal{P}_2, 0 \end{array} \right. \right) \right)
\]

* \(\mathcal{K}_1 = \frac{1}{\Gamma(m_{s,r})} \)

* \(\mathcal{K}_2 = \frac{2^{z_1-2} \xi^2}{2\pi \Gamma(a) \Gamma(b)} \)

* \(\mathcal{W} = \frac{(fab)^2}{16 \bar{\gamma}_{r,d}} \)

* \(\mathcal{P}_1 = \frac{\xi^2 + 1}{2}, \frac{\xi^2 + 2}{2} \)

* \(\mathcal{P}_2 = \frac{\xi^2}{2}, \frac{\xi^2 + 1}{2}, \frac{a}{2}, \frac{a+1}{2}, \frac{b}{2}, \frac{b+1}{2} \)
PDF:

\[
f_{\gamma_{s,r,d}}(\gamma) = \left(\mathcal{K}_1 \left(\frac{m_{s,r}}{\gamma_{s,r}} \right)^{m_{s,r}} \right) \gamma^{m_{s,r} - 1} \exp \left(\frac{-m_{s,r}\gamma}{\gamma_{s,r}} \right)\]
\[
\times \left(1 - \mathcal{K}_2 G^{6,1}_{3,7} \left(\mathcal{W}_\gamma \left| \frac{1}{\mathcal{P}_2}, 0 \right. \right) \right) - \mathcal{K}_2 \gamma^{-1}
\]
\[
\times \left(1 - \mathcal{K}_1 \gamma \left(m_{s,r}, \frac{m_{s,r}\gamma}{\gamma_{s,r}} \right) \right) G^{6,0}_{2,6} \left(\mathcal{W}_\gamma \left| \frac{\mathcal{P}_1}{\mathcal{P}_2} \right. \right)
\]
Statistical Characteristics: Mixed RF-FSO Cooperative System with a Direct Link

CDF:

\[
F_{\gamma_z}(\gamma) = K_3 \gamma (m_{s,d}, \frac{m_{s,d} \gamma}{\gamma_{s,d}}) \left[1 - \left(1 - K_1 \gamma (m_{s,r}, \frac{m_{s,r} \gamma}{\gamma_{s,r}}) \right) \right] \\
\times \left(1 - K_2 G_{3,7}^{6,1} (\mathcal{W}_{\gamma | 1, P_1}) \right) \]

where \(K_3 = 1/\Gamma(m_{s,d}) \).

PDF:

\[
f_{\gamma_z}(\gamma) = F_{\gamma_{s,d}}(\gamma)f_{\gamma_{s,r,d}}(\gamma) + f_{\gamma_{s,d}}(\gamma)F_{\gamma_{s,r,d}}(\gamma).
\]
Outage Probability

- Without Direct Link:

\[P_{\text{out}}(\gamma_{th}) = F_{\gamma_{s,r,d}}(\gamma_{th}) = 1 - \left(1 - \mathcal{K}_1 \gamma \left(\frac{m_{s,r} \gamma_{th}}{\bar{\gamma}_{s,r}} \right) \right) \times \left(1 - \mathcal{K}_2 G_{6,1}^{3,7} \left(\mathcal{W}_{\gamma_{th}} \left| \frac{1, P_1}{P_2, 0} \right) \right) \right). \]

- With Direct RF Link:

\[P_{\text{out}}(\gamma_{th}) = \mathcal{K}_3 \gamma \left(\frac{m_{s,d} \gamma_{th}}{\bar{\gamma}_{s,d}} \right) \left[1 - \left(1 - \mathcal{K}_1 \right) \right] \times \gamma \left(\frac{m_{s,r} \gamma_{th}}{\bar{\gamma}_{s,r}} \right) \left(1 - \mathcal{K}_2 G_{6,1}^{3,7} \left(\mathcal{W}_{\gamma_{th}} \left| \frac{1, P_1}{P_2, 0} \right) \right) \right]. \]
Table: BER parameters for Various Modulation Techniques

<table>
<thead>
<tr>
<th>Modulation techniques</th>
<th>ϕ</th>
<th>ψ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coherent Binary Frequency Shift Keying (CBFSK)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Coherent Binary Phase Shift Keying (CBPSK)</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Non-Coherent Binary Frequency Shift Keying (NBFSK)</td>
<td>1</td>
<td>0.5</td>
</tr>
<tr>
<td>Differential Binary Phase Shift Keying (DBPSK)</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Bit Error Rate II

Average BER Without Direct Link:

\[
P_e = \frac{K_1}{2\Gamma(\phi)} G_{1,2}^{1,2} \left(m_{s,r} \left| \frac{1 - \phi, 1}{m_{s,r}, 0} \right. \right) + \sum_{k=0}^{m_{s,r}-1} \frac{\psi^k K_2}{2k! \Gamma(\phi)} \left(\frac{m_{s,r}}{\bar{\gamma}_{s,r}} \right)^k \]

\[
\times \left(\psi + \frac{m_{s,r}}{\bar{\gamma}_{s,r}} \right)^{-\phi-k} G_{6,2}^{4,7} \left(\frac{\mathcal{W}_{\bar{\gamma}_{s,r}}}{m_{s,r} + \psi \bar{\gamma}_{s,r}} \left| 1 - \phi - k, 1, \mathcal{P}_1 \right. \right) \left(\frac{W_{\bar{\gamma}_{s,r}}}{m_{s,r} + \psi \bar{\gamma}_{s,r}} \left| 1 - \phi - k, 1, \mathcal{P}_1 \right. \right).
\]
Bit Error Rate III

Average BER With Direct RF Link :

\[P_e = \frac{\mathcal{K}_3}{2\Gamma(\phi)} G^{1,2}_{2,2} \left(\frac{m_{s,d}}{\psi \bar{\gamma}_{s,d}} \right| 1 - \phi, 1 \right) - \frac{\psi \phi \mathcal{K}_3}{2\Gamma(\phi)} \]

\[\times \sum_{k=0}^{m_{s,r}-1} \left(\frac{m_{s,r}}{\bar{\gamma}_{s,r}} \right)^k \frac{1}{k!} \left(\psi + \frac{m_{s,r}}{\bar{\gamma}_{s,r}} \right)^{-\phi-k} G^{1,2}_{2,2} \left(\frac{m_{s,d} \bar{\gamma}_{s,r}}{\bar{\gamma}_{s,d}(\psi \bar{\gamma}_{s,r} + m_{s,r})} \right| 1 - \phi - k, 1 \right) \]

\[+ \frac{\psi \phi \mathcal{K}_2}{2\Gamma(\phi)} \sum_{k=0}^{m_{s,r}-1} \left(\frac{m_{s,r}}{\bar{\gamma}_{s,r}} \right)^k \frac{1}{k!} \left(\psi + \frac{m_{s,r}}{\bar{\gamma}_{s,r}} \right)^{-\phi-k} G^{6,2}_{4,7} \left(\frac{\mathcal{W} \bar{\gamma}_{s,r}}{(\psi \bar{\gamma}_{s,r} + m_{s,r})} \right| 1 - k - \phi, 1, \mathcal{P}_1 \right) \]

\[- \frac{\psi \phi \mathcal{K}_2}{2\Gamma(\phi)} \sum_{k=0}^{m_{s,r}-1} \sum_{l=0}^{m_{s,d}-1} \left(\frac{m_{s,d}}{\bar{\gamma}_{s,d}} \right)^l \left(\frac{m_{s,r}}{\bar{\gamma}_{s,r}} \right)^k \frac{1}{l!k!} \left(\psi + \frac{m_{s,r}}{\bar{\gamma}_{s,r}} + \frac{m_{s,d}}{\bar{\gamma}_{s,d}} \right)^{-\phi-k-l} \]

\[\times G^{6,2}_{4,7} \left(\frac{\mathcal{W}}{(\psi + \frac{m_{s,d}}{\bar{\gamma}_{s,d}} + \frac{m_{s,r}}{\bar{\gamma}_{s,r}})} \right| 1 - k - l - \phi, 1, \mathcal{P}_1 \right) \]
Result 1: Outage Probability

Figure: Outage Probability versus average SNR of the mixed RF-FSO system with direct link, for different values of fading parameters and $\xi=1.2$.
Result II: BER for Different Modulation Schemes

Figure: Average BER versus average SNR of the dual hop mixed RF-FSO system with direct link, for different modulation techniques and fading parameters, $m_{s,d}=2$, $m_{s,r}=4$, $a=4.2$, $b=1.4$, and $\xi=1.2$.
Result III: BER with and without Direct RF Link

Figure: Average BER versus average SNR of dual hop mixed RF-FSO system with and without direct link for CBFSK modulation technique and different values of fading parameters and ξ.
M. A. Khalighi and M. Uysal

W. Gappmair
“Further results on the capacity of free space optical channels in turbulent atmosphere,” *IET Commun.*, vol. 5, no. 9, pp. 1262–1267, June 2011.

M. R. Bhatnagar
H. Samimi and M. Uysal

I. S. Ansari, M. S. Alouini, and F. Yilmaz

S. Anees and M R. Bhatnagar

N. I. Miridakis, M. Matthaiou, M., and G. K. Karagiannidis
Y. L. Luke

http://functions.wolfram.com/HypergeometricFunctions/MeijerG/.

A. P. Prudnikov, Y. A. Brychkov and O. I. Marichev

Thank You