CLASSIFICATION OF BISYLLABIC LEXICAL STRESS PATTERNS IN DISORDERED SPEECH USING DEEP LEARNING

Mostafa Shahin, Beena Ahmed (Texas A&M University at Qatar)

Ricardo Gutierrez-Osuna (Texas A&M University)
Outline

• Introduction
• Our Remote Therapy Tool
• Lexical Stress in English
• Method
• Experiments & Results
• Conclusions
• Q&A
What is Childhood Apraxia of Speech (CAS)?

- Speech disorder that can lead to serious communicative disability
- Affects the ability to correctly pronounce sounds, syllables and words
- Due to neurological problems not muscular
- 3.4% - 4.3% of children in the US diagnosed with CAS.
Speech Processing Modules

- Speaker Diarization
 - Detects presence of multiple speakers
 - Extracts child’s speech

- Voice Activity Detector (VAD)
 - Discriminates between speech/silence segments
 - Groping errors

- Lexical Stress Classifier
 - Bisyllabic stress pattern classification
 - Prosodic errors

- Pronunciation Verification
 - Mispronunciation detection
 - Articulation errors
Lexical Stress in English

- English is a stress-timed language.
- In a multi-syllabic words there is at least one stressed syllable.
- The stressed syllable can be characterized by increasing in duration, intensity and pitch.
- Pronouncing the correct stress pattern is important for the intelligibility.
- Each of two consecutive syllable has one of four possible stress patterns:
 - SW: TA.ble, FRI.day
 - WS: sub.MIT, in.SIDE
 - SS: CHILD.HOOD, FOOT.BALL
 - WW: MU.tu.al, OB.vi.ous
Prosodic Errors

• Children with a range of speech disorders, including childhood apraxia of speech (CAS), struggle to produce the correct lexical stress patterns.
• Incorrect production of lexical stress, i.e. prosodic errors, lead to robotic-like speech and intelligibility.
• These errors are more obvious in words with unequal stress pattern, e.g. ‘banana’.
• During treatment, the therapist guides the child on how to control stress levels in pairs of adjacent syllables.
Feature Extraction

Intensity
- Peak-to-peak amplitude over syllable nucleus \((f_1)\)
- Mean energy over syllable nucleus \((f_2)\)
- Maximum energy over syllable nucleus \((f_3)\)

Pitch
- Maximum pitch over syllable nucleus \((f_4)\)
- Mean pitch over syllable nucleus \((f_5)\)

Duration
- Nucleus duration \((f_6)\)
- Syllable duration \((f_7)\)

Spectral
- 27 Mel-spectral energies per frame over nucleus \((f_8)\)
System Block Diagram

Prompt word

Phonetic transcriber

Speech signal

Force alignment

Syllable 1 Syllable 2

Feature extraction

$f_1^{(1)} \cdots f_7^{(1)} + 27 (f_8^{(1)}) * n^{(1)}$

$f_1^{(2)} \cdots f_7^{(2)} + 27 (f_8^{(2)}) * n^{(2)}$

Differential features

$PVI_1 \cdots PVI_7 + 27 (PVI_8)$

DNN

Frames selection/padding

$PVI_1 \cdots PVI_7 + 27 (PVI_8)$

DNN

$PVI_1 \cdots PVI_7 + 27 (PVI_8)$

DNN

$PVI_1 \cdots PVI_7 + 27 (PVI_8)$
Differential Features

• Compute the pair-wise variability index (PVI) for each feature

\[PVI_i = \frac{f_i^{(1)} - f_i^{(2)}}{(f_i^{(1)} + f_i^{(2)})/2} \]

- \(f_i^{(1)} \) The \(i^{th} \) feature of the first syllable
- \(f_i^{(2)} \) The \(i^{th} \) feature of the second syllable

• The 27 Mel-spectral energies averaged over nucleus frames to produce 27 averaged values per syllable.
• The resulted feature vector consists of 34 values representing each pair of consecutive syllables.
Raw Features

- Concatenate the extracted features of the two consecutive syllables into one wide feature vector.
- Each syllable has 7 scalar values $f_1 - f_7$ and $27 \times n$ Mel-coefficients where n is the number of frames in each syllable’s vowel.
- The number of frames fixed to N frames selected from middle of the vowels if $n > N$, or padded to N if $n < N$.
- The number of frames N is determined empirically.
- The size of the produced feature vector equal to: $2 \times (7 + 27 \times N)$
DNN Classifier

- Multi-hidden layers feedforward neural network.
- Backpropagation learning using mini-batch stochastic gradient decent method (MSGD) with adaptive learning rate.
- 4 way soft max top layer for the four possible classes (SW, WS, WW, SS).

Tuning parameters:
- Number of hidden layers
- Number of hidden units per layer
- Number of frames (N).
Speech Corpora

• Typically development speech corpus:
 • Around 500 children ranging from grade 0 to 10
 • Each child pronouncing 100 single multi-syllabic words
 • Phoneme sequence and syllable stress-level extracted automatically using CMU pronunciation dictionary

• Disordered speech corpus:
 • 10 children with CAS aged 4 - 12 years
 • Each child pronouncing 15 isolated words: 10 with a SW pattern across the first two syllables (e.g., DINosaur) and 5 with a WS pattern (e.g., toMAto)
 • The stress-level of each syllable marked manually by SLP
Raw feature DNN (typically development corpus)

Fixed frame size (N) of 25 frames

<table>
<thead>
<tr>
<th>Method</th>
<th>Experiments & Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW/WS</td>
<td>Best ER 6.8% @ 6 layers/600 units</td>
</tr>
<tr>
<td>SW/WS/SS/WW</td>
<td>Best ER 12% @ 4 layers/500 units</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of hidden units/layer</th>
<th>Error rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50, 100, 200, 300, 400, 500, 600</td>
<td>6, 7, 8, 9, 10, 11, 12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Number of layers</th>
<th>Error rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>2</td>
<td>13</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
</tr>
</tbody>
</table>

DNN (typically development corpus)
Raw feature DNN (typically development corpus)

The error rate as a function of number of input frames (N)
Comparison of raw and PVI feature DNN (typically development corpus)
Disordered speech

- System tested against disordered speech which contains only SW/WS patterns.
- The Error rate was:

<table>
<thead>
<tr>
<th>SW</th>
<th>WS</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>27%</td>
<td>25%</td>
<td>26.6%</td>
</tr>
</tbody>
</table>

- The degradation in performance can be explained by the articulation errors that leads to inaccurate phone alignment.
- The perceptual assessment of the disorder speech is inconsistence.
- The inter-rater reliability between two therapists marking lexical stress was 98% for typically developing children and dropped down to 82% for children with CAS.
Conclusions

• We have presented a DNN classifier to detect bisyllabic lexical stress patterns in multi-syllabic English words.
• The DNN classifier is trained using set of temporal and spectral features extracted from pairs of consecutive syllables.
• The feature set of each pair of consecutive syllables is combined by:
 • concatenating the raw features into one wide vector, or
 • computing a variability index to produce one compact feature vector
• Test results on children speech show that the DNN performs better when trained with raw features, as they provide more information than the abstract PVI values.
THANKS
Q&A