FORENSIC WATERMARKING FOR UHD VIDEO

Gwenaël Doërr
Technicolor R&D France
Security & Content Protection Lab
Agenda

Forensic watermarking
► Essentials
► MovieLabs specification
► Baseband vs. bit stream

System considerations
► Trust management
► Physical media
► OTT
► Broadcast

UHD-specific Challenges
► High resolution and high frame rate
► High dynamic range
► Scalable encoding

Take-away Lessons
Forensic Watermarking
Digital Watermarking

Digital watermarking is a technique which imperceptibly alter digital content to hide a message in a robust manner. It is in some sense similar to invisible ink and paper watermarks.

► The watermark is inherently bound to the content
 ► Cannot be removed without damaging content
 ► Survive format conversion i.e. close the analog hole

► The hidden message can (a priori) be anything
 ► Application use case dependent
 ► Copy/playback control information, identifier, metadata, etc.
Watermarking in a Nutshell

Watermarking = communications channel

Blind vs. non-blind detection ⇒ impact on supported use cases

Performance metrics: fidelity, robustness, security, embedding rate, complexity

► Application-dependent trade-off
Forensic Watermarking a.k.a. Traitor Tracing

Goal: identify the source of a leak

- Complementary to conventional content protection
 - Cryptography (CAS/DRM) = piracy prevention
 - Watermarking = piracy deterrence

Strategy: serialize content using watermarking at rendering or distribution time

Payload: user identity, device identity, software version, …, anti-collusion codes

Example deployments
- Pre-theatrical release screeners
- Digital cinema
- Premium content VOD & hospitality market
MovieLabs Specification

Specification for enhanced content protection
▶ Released Fall 2013; updated February 2015

Mandates forensic watermarking for premium content
▶ The system shall have the ability to securely forensically mark video at the server and/or client to recover information necessary to address breaches
▶ The watermarking shall be robust against corruption of the forensic information
▶ The watermark shall be inserted on the server or on the client such that the valid insertion is guaranteed during playback even if the device and its secrets are compromised

Opens business perspective for mass market deployment
From Baseband to Bit Stream Watermarking

RAW signal ➔ Transform coefficients ➔ Quantized indexes ➔ Syntax elements ➔ Bit stream

Intermediary watermarking solutions

Baseband (a.k.a. raw) watermarking

~30% of the proposed watermarking algorithms
Majority of commercially deployed systems
 Direct access to the signal
 Computational complexity
 Full decompression-recompression loop in transit
 Integration to encoder/player introduces dependencies

Bit stream watermarking

<<1% of the proposed watermarking algorithms
Novel paradigm with marginal deployment
 Smooth integration in existing workflows
 Codec-dependent solutions
 Non-blind detection
 Container and signaling management
2-Step Bit Stream Watermarking

- Computational cost shifted to a preprocessing step
- Blitz-fast embedding engine with minimal memory footprint
- Controllable bandwidth overhead to forward watermarking metadata
- Non blind detection
System Considerations
A Matter of Trust

Bypassing the watermarking module = content available in clear

► Strategy used by pirates to bypass BD playback control watermarks

Where and when placing the watermark?

► On the distribution side
 ► Not applicable in some application use cases e.g. broadcast environment
 ► Avoiding leaks from the content distributor: watermarking in the encrypted domain, corruption of the bit stream

► On the reception side
 ► Hardware implementations: secure… but costly
 ► Software implementations: unsecure⚠️
Physical Media

Variants proposal (for Blu-ray discs)

- Alternate versions (2× or more) of small segments of the movie
- Rendered segments selected depending on the keys of the BD player

😊 Virtually no footprint of the watermarking process in the device
😊 Enables emulating bit stream watermarking with baseband systems
😊 Security inherited from cryptographic primitives
😊 Sub-optimal robustness ↔ embedding rate trade-off
😊 Sub-optimal storage overhead
😊 Complex mastering process during production
Physical Media

Watermarking engine embedded in the rendering device

😊 Marginal to no impact for content mastering
😊 Full control over the watermarking engine to optimize performances
😊 Tedious/costly integration depending on the watermarking technology
😊 Lack of standardization for device manufacturers
😊 Legal issues ?

(+ metadata)
OTT Distribution

Three alternate places for watermark embedding
1. OTT service provider head-end
2. Nodes of the content delivery network
3. End user device

Watermarking and (adaptive) streaming
- On-demand delivery of pre-watermarked segments
 - Extension of the variants strategy e.g. using different manifest files
- On-demand watermarking of delivered segments
 - Harmonization of the watermarking throughput across qualities
 - CDN trust/liability issue except if watermarking encrypted content
Technical trade-off

► Storage overhead
► Cache-cancellation side effect
► Computational overhead
► Battery consumption
► Integration cost
► Scalability
► …

No solution fits all application use cases
Broadcast Delivery

By design, watermark serialization occurs on receiver side

► Dedicated proprietary hardware ⇒ increased cost and lower renewability
► Generic standard hardware (OpenPlatform, TrustZone)

Mitigating rebroadcast of live performances

► Sport, concerts, etc
► Pipe/consumer tracing granularity
► Live watermark embedding (and detection)
► Complex integration for bit stream solutions
 ► Broadcast delay vs. profiling time
UHD-specific Challenges
More and Deeper Pixels

Ultra high definition (UHD)

- Resolution: 1080p → 4k / 8k
- Frame rate: 25/60 fps → 100+ fps
- Pixel coding: 8 bits → 10+ bits

⇒ More (complex) samples to process per second

Baseband solution = increased computational burden
Dealing with a New Playground

HDR/WCG ruled by new pixel coding laws

- Watermark fidelity \Rightarrow embedding distortion just below the human perceptibility threshold
- Perceptual models for lossy compression only marginally relevant for watermarking
 - Revise existing recipes \Rightarrow tedious evaluation campaigns
 - Re-use non-optimized strategies

Unclear adversary = challenging robustness

- Uncertainty about the piracy workflow
Supporting Legacy Equipment

Gradual transition to HDR
- Co-existence of two ecosystems
- Conversion mechanisms

Typical requirements
- Watermark invisible in HDR and LDR
- Watermark detectable in HDR and LDR

Technical challenges for watermarking
Video Delivery to Heterogeneous Devices

Rendering screens: TV, computers, tablets, smartphones
► Adaptive streaming (broadband)
► Scalable video encoding (broadcast)

Integration cost of baseband solutions for multiple platforms

Smooth extension for baseband solutions
► More challenging for bit stream solutions due to codec dependency
 ► Watermarking throughput harmonization through qualities
Take-away Lessons
Conclusions

Forensic watermarking will be mandatory for (UHD) content delivery
► Provides a tracing mechanism to deter piracy
► Offers a competitive advantage to provide premium content

Two main watermarking paradigms
► Pros and cons for integration in existing platforms
► Technical challenges to support some UHD features

Both strategies can be adapted to support all scenarios
► Integration cost advantage may differ depending on the particular use case
Thank you

Contact details

Gwenaël Doërr – Principal Scientist

gwenael.doerr@technicolor.com

Alain Durand – Business Development

alain.durand@technicolor.com

Disclaimer: This document is for background informational purposes only. Some points may, for example, be simplified. No guarantees, implied or otherwise, are intended.