Sorry, you need to enable JavaScript to visit this website.

Applications in Systems Biology (MLR-SYSB)

AN ENERGY-EFFICIENT COMPRESSIVE SENSING FRAMEWORK INCORPORATING ONLINE DICTIONARY LEARNING FOR LONG-TERM WIRELESS HEALTH MONITORING

Paper Details

Authors:
Kai XU, Yixing Li, Fengbo Ren
Submitted On:
19 March 2016 - 9:10pm
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

ICASSP_paper_Final_Version.pdf

(153 downloads)

Keywords

Subscribe

[1] Kai XU, Yixing Li, Fengbo Ren, "AN ENERGY-EFFICIENT COMPRESSIVE SENSING FRAMEWORK INCORPORATING ONLINE DICTIONARY LEARNING FOR LONG-TERM WIRELESS HEALTH MONITORING ", IEEE SigPort, 2016. [Online]. Available: http://sigport.org/845. Accessed: Jul. 27, 2017.
@article{845-16,
url = {http://sigport.org/845},
author = {Kai XU; Yixing Li; Fengbo Ren },
publisher = {IEEE SigPort},
title = {AN ENERGY-EFFICIENT COMPRESSIVE SENSING FRAMEWORK INCORPORATING ONLINE DICTIONARY LEARNING FOR LONG-TERM WIRELESS HEALTH MONITORING },
year = {2016} }
TY - EJOUR
T1 - AN ENERGY-EFFICIENT COMPRESSIVE SENSING FRAMEWORK INCORPORATING ONLINE DICTIONARY LEARNING FOR LONG-TERM WIRELESS HEALTH MONITORING
AU - Kai XU; Yixing Li; Fengbo Ren
PY - 2016
PB - IEEE SigPort
UR - http://sigport.org/845
ER -
Kai XU, Yixing Li, Fengbo Ren. (2016). AN ENERGY-EFFICIENT COMPRESSIVE SENSING FRAMEWORK INCORPORATING ONLINE DICTIONARY LEARNING FOR LONG-TERM WIRELESS HEALTH MONITORING . IEEE SigPort. http://sigport.org/845
Kai XU, Yixing Li, Fengbo Ren, 2016. AN ENERGY-EFFICIENT COMPRESSIVE SENSING FRAMEWORK INCORPORATING ONLINE DICTIONARY LEARNING FOR LONG-TERM WIRELESS HEALTH MONITORING . Available at: http://sigport.org/845.
Kai XU, Yixing Li, Fengbo Ren. (2016). "AN ENERGY-EFFICIENT COMPRESSIVE SENSING FRAMEWORK INCORPORATING ONLINE DICTIONARY LEARNING FOR LONG-TERM WIRELESS HEALTH MONITORING ." Web.
1. Kai XU, Yixing Li, Fengbo Ren. AN ENERGY-EFFICIENT COMPRESSIVE SENSING FRAMEWORK INCORPORATING ONLINE DICTIONARY LEARNING FOR LONG-TERM WIRELESS HEALTH MONITORING [Internet]. IEEE SigPort; 2016. Available from : http://sigport.org/845

TRANSIENT MODEL OF EEG USING GINI INDEX-BASED MATCHING PURSUIT


EEG Model

We introduce a novel, transient model for the electroencephalogram (EEG) as the noisy addition of linear filters responding to trains of delta functions. We set the synthesis part as a parameter-tuning problem and obtain synthetic EEG-like data that visually resembles brain activity in the time and frequency domains. For the analysis counterpart, we use sparse approximation to decompose the signal in relevant events via Matching Pursuit.

Paper Details

Authors:
Carlos A Loza, Jose C Principe
Submitted On:
12 March 2016 - 10:35am
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

ICASSP2016_Loza_Principe_poster.pdf

(175 downloads)

Keywords

Subscribe

[1] Carlos A Loza, Jose C Principe, "TRANSIENT MODEL OF EEG USING GINI INDEX-BASED MATCHING PURSUIT", IEEE SigPort, 2016. [Online]. Available: http://sigport.org/643. Accessed: Jul. 27, 2017.
@article{643-16,
url = {http://sigport.org/643},
author = {Carlos A Loza; Jose C Principe },
publisher = {IEEE SigPort},
title = {TRANSIENT MODEL OF EEG USING GINI INDEX-BASED MATCHING PURSUIT},
year = {2016} }
TY - EJOUR
T1 - TRANSIENT MODEL OF EEG USING GINI INDEX-BASED MATCHING PURSUIT
AU - Carlos A Loza; Jose C Principe
PY - 2016
PB - IEEE SigPort
UR - http://sigport.org/643
ER -
Carlos A Loza, Jose C Principe. (2016). TRANSIENT MODEL OF EEG USING GINI INDEX-BASED MATCHING PURSUIT. IEEE SigPort. http://sigport.org/643
Carlos A Loza, Jose C Principe, 2016. TRANSIENT MODEL OF EEG USING GINI INDEX-BASED MATCHING PURSUIT. Available at: http://sigport.org/643.
Carlos A Loza, Jose C Principe. (2016). "TRANSIENT MODEL OF EEG USING GINI INDEX-BASED MATCHING PURSUIT." Web.
1. Carlos A Loza, Jose C Principe. TRANSIENT MODEL OF EEG USING GINI INDEX-BASED MATCHING PURSUIT [Internet]. IEEE SigPort; 2016. Available from : http://sigport.org/643

Differential Flux Balance Analysis of Quantitative Proteomic Data on Protein Interaction Networks


differential flux balance analysis of proteomic data

Protein fluxes provide a more refined notion of protein abundance than raw counts alone by considering potential channels based on protein interaction networks. We propose a novel method to estimate protein fluxes in a protein interaction network using a linear programming model based on the framework of flux balance analysis.

Paper Details

Authors:
David F. Gleich, Michael Gribskov
Submitted On:
23 February 2016 - 1:44pm
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

bjiangDiffFBA.pdf

(214 downloads)

Keywords

Subscribe

[1] David F. Gleich, Michael Gribskov, "Differential Flux Balance Analysis of Quantitative Proteomic Data on Protein Interaction Networks", IEEE SigPort, 2015. [Online]. Available: http://sigport.org/488. Accessed: Jul. 27, 2017.
@article{488-15,
url = {http://sigport.org/488},
author = {David F. Gleich; Michael Gribskov },
publisher = {IEEE SigPort},
title = {Differential Flux Balance Analysis of Quantitative Proteomic Data on Protein Interaction Networks},
year = {2015} }
TY - EJOUR
T1 - Differential Flux Balance Analysis of Quantitative Proteomic Data on Protein Interaction Networks
AU - David F. Gleich; Michael Gribskov
PY - 2015
PB - IEEE SigPort
UR - http://sigport.org/488
ER -
David F. Gleich, Michael Gribskov. (2015). Differential Flux Balance Analysis of Quantitative Proteomic Data on Protein Interaction Networks. IEEE SigPort. http://sigport.org/488
David F. Gleich, Michael Gribskov, 2015. Differential Flux Balance Analysis of Quantitative Proteomic Data on Protein Interaction Networks. Available at: http://sigport.org/488.
David F. Gleich, Michael Gribskov. (2015). "Differential Flux Balance Analysis of Quantitative Proteomic Data on Protein Interaction Networks." Web.
1. David F. Gleich, Michael Gribskov. Differential Flux Balance Analysis of Quantitative Proteomic Data on Protein Interaction Networks [Internet]. IEEE SigPort; 2015. Available from : http://sigport.org/488

Control Mechanism Modeling of Human Cardiovascular-Respiratory System

Paper Details

Authors:
Qi Cheng, Bruce A. Benjamin
Submitted On:
23 February 2016 - 1:44pm
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

GSIP_Gutta.pdf

(242 downloads)

Keywords

Subscribe

[1] Qi Cheng, Bruce A. Benjamin, "Control Mechanism Modeling of Human Cardiovascular-Respiratory System", IEEE SigPort, 2015. [Online]. Available: http://sigport.org/469. Accessed: Jul. 27, 2017.
@article{469-15,
url = {http://sigport.org/469},
author = {Qi Cheng; Bruce A. Benjamin },
publisher = {IEEE SigPort},
title = {Control Mechanism Modeling of Human Cardiovascular-Respiratory System},
year = {2015} }
TY - EJOUR
T1 - Control Mechanism Modeling of Human Cardiovascular-Respiratory System
AU - Qi Cheng; Bruce A. Benjamin
PY - 2015
PB - IEEE SigPort
UR - http://sigport.org/469
ER -
Qi Cheng, Bruce A. Benjamin. (2015). Control Mechanism Modeling of Human Cardiovascular-Respiratory System. IEEE SigPort. http://sigport.org/469
Qi Cheng, Bruce A. Benjamin, 2015. Control Mechanism Modeling of Human Cardiovascular-Respiratory System. Available at: http://sigport.org/469.
Qi Cheng, Bruce A. Benjamin. (2015). "Control Mechanism Modeling of Human Cardiovascular-Respiratory System." Web.
1. Qi Cheng, Bruce A. Benjamin. Control Mechanism Modeling of Human Cardiovascular-Respiratory System [Internet]. IEEE SigPort; 2015. Available from : http://sigport.org/469

Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother


This paper is concerned with state estimation at a fixed time point in a given time series of observations of a Boolean dynamical system. Towards this end, we introduce the Boolean Kalman Smoother, which provides an efficient algorithm to compute the optimal MMSE state estimator for this problem. Performance is investigated using a Boolean network model of the p53-MDM2 negative feedback loop gene regulatory network observed through time series of Next-Generation Sequencing (NGS) data.

Paper Details

Authors:
Ulisses Braga-Neto
Submitted On:
23 February 2016 - 1:44pm
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

Globalsip_presentation_v3.pdf

(259 downloads)

Keywords

Subscribe

[1] Ulisses Braga-Neto, "Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother", IEEE SigPort, 2015. [Online]. Available: http://sigport.org/424. Accessed: Jul. 27, 2017.
@article{424-15,
url = {http://sigport.org/424},
author = {Ulisses Braga-Neto },
publisher = {IEEE SigPort},
title = {Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother},
year = {2015} }
TY - EJOUR
T1 - Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother
AU - Ulisses Braga-Neto
PY - 2015
PB - IEEE SigPort
UR - http://sigport.org/424
ER -
Ulisses Braga-Neto. (2015). Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother. IEEE SigPort. http://sigport.org/424
Ulisses Braga-Neto, 2015. Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother. Available at: http://sigport.org/424.
Ulisses Braga-Neto. (2015). "Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother." Web.
1. Ulisses Braga-Neto. Optimal State Estimation for Boolean Dynamical Systems using a Boolean Kalman Smoother [Internet]. IEEE SigPort; 2015. Available from : http://sigport.org/424