Sorry, you need to enable JavaScript to visit this website.

Medical imaging

SEGMENTATION AND TRACKING OF INFERIOR VENA CAVA IN ULTRASOUND IMAGES USING A NOVEL POLAR ACTIVE CONTOUR ALGORITHM


Medical research suggests that the area of the IVC and its temporal variation imaged by bedside ultrasound is useful in guiding resuscitation of the critically-ill. Unfortunately, gaps in the vessel wall and intraliminal artifact represents a challenge for both manual and existing algorithm-based segmentation techniques.

Paper Details

Authors:
Ebrahim Karami, Mohamed Shehata, Andrew Smith
Submitted On:
13 November 2017 - 12:50am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

IVC_Ebrahim 2.pdf

(11 downloads)

Keywords

Subscribe

[1] Ebrahim Karami, Mohamed Shehata, Andrew Smith, "SEGMENTATION AND TRACKING OF INFERIOR VENA CAVA IN ULTRASOUND IMAGES USING A NOVEL POLAR ACTIVE CONTOUR ALGORITHM", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2330. Accessed: Dec. 17, 2017.
@article{2330-17,
url = {http://sigport.org/2330},
author = {Ebrahim Karami; Mohamed Shehata; Andrew Smith },
publisher = {IEEE SigPort},
title = {SEGMENTATION AND TRACKING OF INFERIOR VENA CAVA IN ULTRASOUND IMAGES USING A NOVEL POLAR ACTIVE CONTOUR ALGORITHM},
year = {2017} }
TY - EJOUR
T1 - SEGMENTATION AND TRACKING OF INFERIOR VENA CAVA IN ULTRASOUND IMAGES USING A NOVEL POLAR ACTIVE CONTOUR ALGORITHM
AU - Ebrahim Karami; Mohamed Shehata; Andrew Smith
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2330
ER -
Ebrahim Karami, Mohamed Shehata, Andrew Smith. (2017). SEGMENTATION AND TRACKING OF INFERIOR VENA CAVA IN ULTRASOUND IMAGES USING A NOVEL POLAR ACTIVE CONTOUR ALGORITHM. IEEE SigPort. http://sigport.org/2330
Ebrahim Karami, Mohamed Shehata, Andrew Smith, 2017. SEGMENTATION AND TRACKING OF INFERIOR VENA CAVA IN ULTRASOUND IMAGES USING A NOVEL POLAR ACTIVE CONTOUR ALGORITHM. Available at: http://sigport.org/2330.
Ebrahim Karami, Mohamed Shehata, Andrew Smith. (2017). "SEGMENTATION AND TRACKING OF INFERIOR VENA CAVA IN ULTRASOUND IMAGES USING A NOVEL POLAR ACTIVE CONTOUR ALGORITHM." Web.
1. Ebrahim Karami, Mohamed Shehata, Andrew Smith. SEGMENTATION AND TRACKING OF INFERIOR VENA CAVA IN ULTRASOUND IMAGES USING A NOVEL POLAR ACTIVE CONTOUR ALGORITHM [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2330

3D SHAPE ASYMMETRY ANALYSIS USING CORRESPONDENCE BETWEEN PARTIAL GEODESIC CURVES


Analyzing the asymmetry of anatomical shapes is one of the cornerstones of efficient computerized diagnosis. In the application of scoliotic trunk analysis, one major challenge is the high variability and complexity of deformations due to the pathology itself, and to changes of body poses, for instance, torsos acquired in lateral bending poses for surgical planning. In this paper, we present a novel and fully automatic approach to analyzing the asymmetry of deformable trunk shapes.

Paper Details

Authors:
Submitted On:
15 November 2017 - 11:28am
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

GlobalSIP17_Slides

(18 downloads)

Keywords

Subscribe

[1] , "3D SHAPE ASYMMETRY ANALYSIS USING CORRESPONDENCE BETWEEN PARTIAL GEODESIC CURVES", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2328. Accessed: Dec. 17, 2017.
@article{2328-17,
url = {http://sigport.org/2328},
author = { },
publisher = {IEEE SigPort},
title = {3D SHAPE ASYMMETRY ANALYSIS USING CORRESPONDENCE BETWEEN PARTIAL GEODESIC CURVES},
year = {2017} }
TY - EJOUR
T1 - 3D SHAPE ASYMMETRY ANALYSIS USING CORRESPONDENCE BETWEEN PARTIAL GEODESIC CURVES
AU -
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2328
ER -
. (2017). 3D SHAPE ASYMMETRY ANALYSIS USING CORRESPONDENCE BETWEEN PARTIAL GEODESIC CURVES. IEEE SigPort. http://sigport.org/2328
, 2017. 3D SHAPE ASYMMETRY ANALYSIS USING CORRESPONDENCE BETWEEN PARTIAL GEODESIC CURVES. Available at: http://sigport.org/2328.
. (2017). "3D SHAPE ASYMMETRY ANALYSIS USING CORRESPONDENCE BETWEEN PARTIAL GEODESIC CURVES." Web.
1. . 3D SHAPE ASYMMETRY ANALYSIS USING CORRESPONDENCE BETWEEN PARTIAL GEODESIC CURVES [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2328

LESION DETECTION USING T1-WEIGHTED MRI: A NEW APPROACH BASED ON FUNCTIONAL CORTICAL ROIS

Paper Details

Authors:
Dazhou Guo, Kang Zheng, Song Wang
Submitted On:
14 September 2017 - 1:58pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICIP 2017 poster

(28 downloads)

Keywords

Subscribe

[1] Dazhou Guo, Kang Zheng, Song Wang, "LESION DETECTION USING T1-WEIGHTED MRI: A NEW APPROACH BASED ON FUNCTIONAL CORTICAL ROIS", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/2041. Accessed: Dec. 17, 2017.
@article{2041-17,
url = {http://sigport.org/2041},
author = {Dazhou Guo; Kang Zheng; Song Wang },
publisher = {IEEE SigPort},
title = {LESION DETECTION USING T1-WEIGHTED MRI: A NEW APPROACH BASED ON FUNCTIONAL CORTICAL ROIS},
year = {2017} }
TY - EJOUR
T1 - LESION DETECTION USING T1-WEIGHTED MRI: A NEW APPROACH BASED ON FUNCTIONAL CORTICAL ROIS
AU - Dazhou Guo; Kang Zheng; Song Wang
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/2041
ER -
Dazhou Guo, Kang Zheng, Song Wang. (2017). LESION DETECTION USING T1-WEIGHTED MRI: A NEW APPROACH BASED ON FUNCTIONAL CORTICAL ROIS. IEEE SigPort. http://sigport.org/2041
Dazhou Guo, Kang Zheng, Song Wang, 2017. LESION DETECTION USING T1-WEIGHTED MRI: A NEW APPROACH BASED ON FUNCTIONAL CORTICAL ROIS. Available at: http://sigport.org/2041.
Dazhou Guo, Kang Zheng, Song Wang. (2017). "LESION DETECTION USING T1-WEIGHTED MRI: A NEW APPROACH BASED ON FUNCTIONAL CORTICAL ROIS." Web.
1. Dazhou Guo, Kang Zheng, Song Wang. LESION DETECTION USING T1-WEIGHTED MRI: A NEW APPROACH BASED ON FUNCTIONAL CORTICAL ROIS [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/2041

COMPARISON OF OBJECTIVE FUNCTIONS IN CNN-BASED PROSTATE MAGNETIC RESONANCE IMAGE SEGMENTATION


We investigate the impacts of objective functions on the performance of deep-learning-based prostate magnetic resonance image segmentation. To this end, we first develop a baseline convolutional neural network (BCNN) for the prostate image segmentation, which consists of encoding, bridge, decoding, and classification modules. In the BCNN, we use 3D convolutional layers to consider volumetric information. Also, we adopt the residual feature forwarding and intermediate feature propagation techniques to make the BCNN reliably trainable for various objective functions.

Paper Details

Authors:
Juhyeok Mun, Won-Dong Jang, Deuk Jae Sung, Chang-Su Kim
Submitted On:
13 September 2017 - 10:57pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICIP_JHMUN_POSTER.pdf

(31 downloads)

Keywords

Additional Categories

Subscribe

[1] Juhyeok Mun, Won-Dong Jang, Deuk Jae Sung, Chang-Su Kim, "COMPARISON OF OBJECTIVE FUNCTIONS IN CNN-BASED PROSTATE MAGNETIC RESONANCE IMAGE SEGMENTATION", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1991. Accessed: Dec. 17, 2017.
@article{1991-17,
url = {http://sigport.org/1991},
author = {Juhyeok Mun; Won-Dong Jang; Deuk Jae Sung; Chang-Su Kim },
publisher = {IEEE SigPort},
title = {COMPARISON OF OBJECTIVE FUNCTIONS IN CNN-BASED PROSTATE MAGNETIC RESONANCE IMAGE SEGMENTATION},
year = {2017} }
TY - EJOUR
T1 - COMPARISON OF OBJECTIVE FUNCTIONS IN CNN-BASED PROSTATE MAGNETIC RESONANCE IMAGE SEGMENTATION
AU - Juhyeok Mun; Won-Dong Jang; Deuk Jae Sung; Chang-Su Kim
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1991
ER -
Juhyeok Mun, Won-Dong Jang, Deuk Jae Sung, Chang-Su Kim. (2017). COMPARISON OF OBJECTIVE FUNCTIONS IN CNN-BASED PROSTATE MAGNETIC RESONANCE IMAGE SEGMENTATION. IEEE SigPort. http://sigport.org/1991
Juhyeok Mun, Won-Dong Jang, Deuk Jae Sung, Chang-Su Kim, 2017. COMPARISON OF OBJECTIVE FUNCTIONS IN CNN-BASED PROSTATE MAGNETIC RESONANCE IMAGE SEGMENTATION. Available at: http://sigport.org/1991.
Juhyeok Mun, Won-Dong Jang, Deuk Jae Sung, Chang-Su Kim. (2017). "COMPARISON OF OBJECTIVE FUNCTIONS IN CNN-BASED PROSTATE MAGNETIC RESONANCE IMAGE SEGMENTATION." Web.
1. Juhyeok Mun, Won-Dong Jang, Deuk Jae Sung, Chang-Su Kim. COMPARISON OF OBJECTIVE FUNCTIONS IN CNN-BASED PROSTATE MAGNETIC RESONANCE IMAGE SEGMENTATION [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1991

Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network

Paper Details

Authors:
Submitted On:
11 September 2017 - 12:17pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICIP2017_poster.pdf

(28 downloads)

Keywords

Subscribe

[1] , "Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1913. Accessed: Dec. 17, 2017.
@article{1913-17,
url = {http://sigport.org/1913},
author = { },
publisher = {IEEE SigPort},
title = {Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network},
year = {2017} }
TY - EJOUR
T1 - Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network
AU -
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1913
ER -
. (2017). Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network. IEEE SigPort. http://sigport.org/1913
, 2017. Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network. Available at: http://sigport.org/1913.
. (2017). "Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network." Web.
1. . Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1913

Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network

Paper Details

Authors:
Submitted On:
11 September 2017 - 12:17pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICIP2017_poster.pdf

(54 downloads)

Keywords

Subscribe

[1] , "Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1912. Accessed: Dec. 17, 2017.
@article{1912-17,
url = {http://sigport.org/1912},
author = { },
publisher = {IEEE SigPort},
title = {Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network},
year = {2017} }
TY - EJOUR
T1 - Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network
AU -
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1912
ER -
. (2017). Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network. IEEE SigPort. http://sigport.org/1912
, 2017. Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network. Available at: http://sigport.org/1912.
. (2017). "Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network." Web.
1. . Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1912

Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network

Paper Details

Authors:
Submitted On:
11 September 2017 - 12:17pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICIP2017_poster.pdf

(54 downloads)

Keywords

Subscribe

[1] , "Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1911. Accessed: Dec. 17, 2017.
@article{1911-17,
url = {http://sigport.org/1911},
author = { },
publisher = {IEEE SigPort},
title = {Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network},
year = {2017} }
TY - EJOUR
T1 - Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network
AU -
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1911
ER -
. (2017). Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network. IEEE SigPort. http://sigport.org/1911
, 2017. Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network. Available at: http://sigport.org/1911.
. (2017). "Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network." Web.
1. . Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1911

Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network

Paper Details

Authors:
Submitted On:
11 September 2017 - 12:17pm
Short Link:
Type:
Event:
Presenter's Name:
Paper Code:
Document Year:
Cite

Document Files

ICIP2017_poster.pdf

(54 downloads)

Keywords

Subscribe

[1] , "Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1910. Accessed: Dec. 17, 2017.
@article{1910-17,
url = {http://sigport.org/1910},
author = { },
publisher = {IEEE SigPort},
title = {Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network},
year = {2017} }
TY - EJOUR
T1 - Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network
AU -
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1910
ER -
. (2017). Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network. IEEE SigPort. http://sigport.org/1910
, 2017. Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network. Available at: http://sigport.org/1910.
. (2017). "Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network." Web.
1. . Automated 3D Muscle Segmentation From MRI Data Using Convolutional Neural Network [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1910

LINE DETECTION IN SPECKLE IMAGES USING RADON TRANSFORM AND L1 REGULARIZATION

Paper Details

Authors:
Submitted On:
5 March 2017 - 12:42pm
Short Link:
Type:
Event:
Document Year:
Cite

Document Files

linerestoration.pptx

(94 downloads)

Keywords

Subscribe

[1] , " LINE DETECTION IN SPECKLE IMAGES USING RADON TRANSFORM AND L1 REGULARIZATION", IEEE SigPort, 2017. [Online]. Available: http://sigport.org/1633. Accessed: Dec. 17, 2017.
@article{1633-17,
url = {http://sigport.org/1633},
author = { },
publisher = {IEEE SigPort},
title = { LINE DETECTION IN SPECKLE IMAGES USING RADON TRANSFORM AND L1 REGULARIZATION},
year = {2017} }
TY - EJOUR
T1 - LINE DETECTION IN SPECKLE IMAGES USING RADON TRANSFORM AND L1 REGULARIZATION
AU -
PY - 2017
PB - IEEE SigPort
UR - http://sigport.org/1633
ER -
. (2017). LINE DETECTION IN SPECKLE IMAGES USING RADON TRANSFORM AND L1 REGULARIZATION. IEEE SigPort. http://sigport.org/1633
, 2017. LINE DETECTION IN SPECKLE IMAGES USING RADON TRANSFORM AND L1 REGULARIZATION. Available at: http://sigport.org/1633.
. (2017). " LINE DETECTION IN SPECKLE IMAGES USING RADON TRANSFORM AND L1 REGULARIZATION." Web.
1. . LINE DETECTION IN SPECKLE IMAGES USING RADON TRANSFORM AND L1 REGULARIZATION [Internet]. IEEE SigPort; 2017. Available from : http://sigport.org/1633

Sparse Reconstruction for Fluorescence Lifetime Imaging Microscopy with Poisson Noise


We present a novel, three-stage method to solve the fluorescence lifetime imaging problem under low-photon conditions. In particular, we reconstruct the fluorophore concentration along with its support and fluorescence lifetime from the time-dependent measurements of scattered light exiting the domain. Because detectors used for these problems are photon counting devices, measurements are corrupted by Poisson noise. Consequently, we explicitly consider Poisson noise in conjunction with SPIRAL-$\ell_p$ -- a sparsity-promoting nonconvex optimization method -- to solve this problem.

GlobalSIP.pdf

PDF icon FLIM with Poisson (1109 downloads)

Paper Details

Authors:
Lasith Adhikari, Arnold D. Kim, Roummel F. Marcia
Submitted On:
7 December 2016 - 10:28am
Short Link:
Type:
Event:
Presenter's Name:
Document Year:
Cite

Document Files

FLIM with Poisson

(1109 downloads)

Keywords

Additional Categories

Subscribe

[1] Lasith Adhikari, Arnold D. Kim, Roummel F. Marcia, "Sparse Reconstruction for Fluorescence Lifetime Imaging Microscopy with Poisson Noise", IEEE SigPort, 2016. [Online]. Available: http://sigport.org/1406. Accessed: Dec. 17, 2017.
@article{1406-16,
url = {http://sigport.org/1406},
author = {Lasith Adhikari; Arnold D. Kim; Roummel F. Marcia },
publisher = {IEEE SigPort},
title = {Sparse Reconstruction for Fluorescence Lifetime Imaging Microscopy with Poisson Noise},
year = {2016} }
TY - EJOUR
T1 - Sparse Reconstruction for Fluorescence Lifetime Imaging Microscopy with Poisson Noise
AU - Lasith Adhikari; Arnold D. Kim; Roummel F. Marcia
PY - 2016
PB - IEEE SigPort
UR - http://sigport.org/1406
ER -
Lasith Adhikari, Arnold D. Kim, Roummel F. Marcia. (2016). Sparse Reconstruction for Fluorescence Lifetime Imaging Microscopy with Poisson Noise. IEEE SigPort. http://sigport.org/1406
Lasith Adhikari, Arnold D. Kim, Roummel F. Marcia, 2016. Sparse Reconstruction for Fluorescence Lifetime Imaging Microscopy with Poisson Noise. Available at: http://sigport.org/1406.
Lasith Adhikari, Arnold D. Kim, Roummel F. Marcia. (2016). "Sparse Reconstruction for Fluorescence Lifetime Imaging Microscopy with Poisson Noise." Web.
1. Lasith Adhikari, Arnold D. Kim, Roummel F. Marcia. Sparse Reconstruction for Fluorescence Lifetime Imaging Microscopy with Poisson Noise [Internet]. IEEE SigPort; 2016. Available from : http://sigport.org/1406

Pages