Sorry, you need to enable JavaScript to visit this website.

Lyrics transcription of polyphonic music is challenging not only because the singing vocals are corrupted by the background music, but also because the background music and the singing style vary across music genres, such as pop, metal, and hip hop, which affects lyrics intelligibility of the song in different ways. In this work, we propose to transcribe the lyrics of polyphonic music using a novel genre-conditioned network.

Categories:
7 Views

Conventional music structure analysis algorithms aim to divide a song into segments and to group them with abstract labels (e.g., ‘A’, ‘B’, and ‘C’). However, explicitly identifying the function of each segment (e.g., ‘verse’ or ‘chorus’) is rarely attempted, but has many applications. We introduce a multi-task deep learning framework to model these structural semantic labels directly from audio by estimating "verseness," "chorusness," and so forth, as a function of time.

Categories:
33 Views

Experiments to understand the sensorimotor neural interactions in the human cortical speech system support the existence of a bidirectional flow of interactions between the auditory and motor regions. Their key function is to enable the brain to ‘learn’ how to control the vocal tract for speech production. This idea is the impetus for the recently proposed "MirrorNet", a constrained autoencoder architecture.

Categories:
28 Views

Most of existing audio fingerprinting systems have limitations to be used for high-specific audio retrieval at scale. In this work, we generate a low-dimensional representation from a short unit segment of audio, and couple this fingerprint with a fast maximum inner-product search. To this end, we present a contrastive learning framework that derives from the segment-level search objective. Each update in training uses a batch consisting of a set of pseudo labels, randomly selected original samples, and their augmented replicas.

Categories:
44 Views

The identification of structural differences between a music performance and the score is a challenging yet integral step of audio-to-score alignment, an important subtask of music signal processing. We present a novel method to detect such differences between the score and performance for a given piece of music using progressively dilated convolutional neural networks. Our method incorporates varying dilation rates at different layers to capture both short-term and long-term context, and can be employed successfully in the presence of limited annotated data.

Categories:
156 Views

Most music source separation systems require large collections of isolated sources for training, which can be difficult to obtain. In this work, we use musical scores, which are comparatively easy to obtain, as a weak label for training a source separation system. In contrast with previous score-informed separation approaches, our system does not require isolated sources, and score is used only as a training target, not required for inference.

Categories:
18 Views

Most music source separation systems require large collections of isolated sources for training, which can be difficult to obtain. In this work, we use musical scores, which are comparatively easy to obtain, as a weak label for training a source separation system. In contrast with previous score-informed separation approaches, our system does not require isolated sources, and score is used only as a training target, not required for inference.

Categories:
7 Views

Online beat tracking (OBT) has always been a challenging task. Due to the inaccessibility of future data and the need to make inference in real-time. We propose Don’t Look back! (DLB), a novel approach optimized for efficiency when performing OBT. DLB feeds the activations of a unidirectional RNN into an enhanced Monte-Carlo localization model to infer beat positions. Most preexisting OBT methods either apply some offline approaches to a moving window containing past data to make predictions about future beat positions or must be primed with past data at startup to initialize.

Categories:
17 Views

Sound Event Detection and Audio Classification tasks are traditionally addressed through time-frequency representations of audio signals such as spectrograms. However, the emergence of deep neural networks as efficient feature extractors has enabled the direct use of audio signals for classification purposes. In this paper, we attempt to recognize musical instruments in polyphonic audio by only feeding their raw waveforms into deep learning models.

Categories:
8 Views

Over the last decades, various conceptually different approaches for fundamental frequency (F0) estimation in monophonic audio recordings have been developed. The algorithms’ performances vary depending on the acoustical and musical properties of the input audio signal. A common strategy to assess the reliability (correctness) of an estimated F0-trajectory is to evaluate against an annotated reference. However, such annotations may not be available for a particular audio collection and are typically laborintensive to generate.

Categories:
2 Views

Pages