
A. APPENDIX

A.1. Critical pixel mask

Alg. 1 displays the pseudo-code for the extraction of our
critical pixel mask.

Algorithm 1 CLoss critical pixel mask M
Input 1: X % per-pixel logits of the prediction
Input 2: Y % ground truth mask
Xbin ← argmax(X) % Binarize to foreground
Xfore ← X(Foreground) % Foreground likelyhood
SX ← skeletonize(Xfore) % Soft skeleton
SY ← skeletonize(Y )

Determine gaps % with distance transform (dTr)
Sgap ← max(0, SY −Xbin)

Vgap ←
(

dTr
(
1− (SY − Sgap)

)
> dTr

(
1− Sgap

))
⊙ Y

% with Hadamard product ⊙

Determine false positive connections
Sfp ← max(0, SX − Y )

Vfp ←
(

dTr
(
1− (SX − Sfp)

)
> dTr

(
1− Sfp

))
⊙Xbin

Output: M ← Vgap ∪ Vfp

Applying soft skeletonization increases performance for
binary segmentation over skeletonization of binary predic-
tions [2–4]. Our proposed method can be implemented with
any improved skeleton version of [2], eg. [3]. Skeletonization
makes the extraction of the critical pixel mask orders of mag-
nitudes faster than the recently proposed critical pixel mask
extraction based on persistent homology [5], as compared
in [11].

A.2. Metric Susceptibility to Artifacts

It is of critical importance to use evaluation metrics with a
high sensitivity towards the desired topological solution [10].
However, popular topology metrics based on the number of
connected components (β0) are overly sensitive to artifacts,
especially in the form of mico-noise (separate components
consisting of only a few pixels), which diminishes result
integrity. The micro-noise problem is so far only addressed
by [4], which removes small separate structures during train-
ing. Most recent solutions [2, 3, 5–7, 11, 12] don’t address
micro noise and are thereby effectively optimized for topolog-
ical correctness and micro-noise suppression simultaneously.
This is a problem because we are primarily interested in
developing methods to achieve major topological correctness
and not to achieve micro-noise suppression. We argue that
micro-noise suppression should only be seen as a desired

property of a method but not as a primary attribute to com-
pare different methods for major topological correctness. We
propose the following solution.

Proposed Topological Post-Processing. We propose to
leverage the natural characteristic of overlap-based losses to
minimize artifacts (and micro-noise) [1, 22]. Therefore, we
propose to include a pretraining with a topology-insensitive
overlap-based loss function by default and then conduct a
fine-tuning with a topology-aware loss function. The sug-
gested pretraining is compatible with all existing topology-
preserving loss functions. We suggest to only keep the predic-
tions of the fine-tuning training (Xft

bin), which are connected
to the pretraining predictions (Xpre

bin ). Expressed as an equa-
tion, this means for the mask ci of each connected component
i in Xft

bin we suggest to only keep i in Xft
bin if

sum
(
ci ⊙Xpre

bin

)
> 0 (5)

In particular, our proposed topological post-processing doesn’t
alter the connectivity of Xopt

bin in any way except for removing
separate structures which were not present in the pretraining.
Our suggested post-processing supports the intuition of im-
proving the topology of an existing structure without adding
new structures.

We note that a comparable effect of micro noise removal can
in theory be achieved with a post-processing of opening and
erosion operations. However, the applicability of opening and
erosion operations depends highly on the predicted structures.
Opening and erosion operations have a high risk of introduc-
ing new false positive connections that weren’t present before
the post-processing. Our suggested post-processing is by
design robust to introducing new artifacts in the form of false
positive connections.

Compared to the runtime solution of [4], our approach doesn’t
require any additional hyperparameters to select the size of
the removed structures and will also remove artifacts which
are missed by a fixed threshold.

A.3. Cement line dataset (CLD)

Image Acquisition. Specific steps for acquiring the used
3D images of the nanotomography bone cement line dataset
are described in [16], sections 2.4.2 to 2.4.4.1. These steps
include the preparation of the imaged specimen, the imaging
procedure and the processing of the raw images. We cropped
the images from their initial shape 1024²× 1024 to their final
shape 1024²× 600 to focus on areas with pronounced cement
lines and minimal artifacts.

Annotation. The annotation was done for each image on
the complete initial shape of 1024² × 1024. The annotation
of the cement lines was done manually in Avizo (version



2024.2, Thermo Fisher Scientific, Waltham, USA), utilizing
the standard brush and interpolation tools. The cement lines
have low contrast and diffuse borders. Importantly, their
visibility and area proportion in the 2D view of the 3D image
critically depends on the view angle in 3D, which doesn’t
always align well with the available view axes (xy,xz,zy).
When the cement lines slightly change orientation inside the
bone they can become much less pronounced in the current
2D view direction and significantly change in the displayed
size. To address these issues, we conducted a pre-annotation
for all 3D images from all three view angles (axes:xy,xz,zy)
to acquire a coarse initial representation of all cement lines.
The pre-annotation corresponds to a detailed annotation about
every 50 slices for each view axis for every 3D image. The
pre-annotation was used to determine the preferred orienta-
tion of the majority of the cement lines within the 3D image.
The pre-annotation was further used as an aid in the more
thorough annotation to not miss any cement lines due to
viewing angle effects. The thorough annotation was done
along the most suitable view axis (xy,xz, or zy). This most
suitable view axis was chosen in a way that the majority of the
cement lines had a small area proportion in the 2D view of the
3D image, see Fig. 6. The thorough annotation corresponds
to a detailed annotation about every three to five slices along
the most suitable view axis for every 3D image. The thorough
annotation for each 3D image was then interpolated with the
standard Avizo interpolation tool. This interpolation was
designed by Avizo to only interpolate between annotation
slices without considering any gray values. However, the
resulting annotation was a suitable compromise between
annotation time and annotation accuracy. Sometimes, the
interpolation tool didn’t work as expected, and there were
holes within the annotation that didn’t get interpolated. To
close these interpolation holes, we conducted a series of
morphological opening and closing operations until the holes
were closed. We repeated this step with additional annotated
slices when this approach didn’t work initially. We note that
the interpolation had also severe trouble interpolating more
than one cement line at a time. As a solution, we conducted
the thorough annotation and interpolation procedure only for
selected parts of a single cement line at once, which we later
combined into the complete annotation.

A.4. Datasets

Roads contains aerial images (1500²) of the road system in
Massachusetts, similar to settings in [2] and [6] we use 421
images for training and 49 for testing, after excluding images
with a white-masked pixel percentage of more than 4%.
HRF-Retina consists of high-resolution fundus images (3504
× 2336) for retinal vessel segmentation, we use 36 images
for training and 9 for testing. Vessap contains volumetric
scans (500² × 50) of brain vessels in two channels, similar
to settings in [2] we use 8 3D images for training and 3 for

Image Annotation

Fig. 6: Cement line Annotation. The cement lines have low
contrast and diffuse borders. Also, their appearance is diffuse,
note in the left image the changing grayscale characteristics
of the cement line in the lower right corner from bottom to
right.

testing, using both input channels simultaneously. Our CLD
contains volumetric scans (1024² × 600) of bone cement
lines, we use 13 3D images for training and 4 for testing. We
conduct a five-fold cross-validation for all datasets.

We further note that the high-resolution of HRF-Retina is
especially suited for examining the influence of the critical
pixel mask as the topological errors are represented by more
pixels than in lower-resolution images.

A.5. Compared Methods

The nnU-Net [9] is a framework that provides an improved
version of the standard U-Net [21] with optimized hyperpa-
rameters. The nnU-Net is by default trained with a compound
loss, consisting of Dice and Cross-Entropy loss [1].

clDice [2] is another topology-aware segmentation loss based
on critical pixels that focuses on the extracted skeleton of
likelihood maps and ground truth masks.

Method optimization. To demonstrate the effectiveness
and better topological performances of our proposed method,
we ensure identical prerequisites of our proposed method
and the compared methods so that better performance can be
clearly attributed to our proposed critical pixel mask. In that
spirit, we conduct hyperparameter optimizations not only for
our proposed method but also for the compared methods. For
compound clDice, we conducted a weight hyperparameter
search for each dataset ranging from 0.1 to 0.5 in 0.1 steps.
For space reasons, we only report the compound clDice result
with the highest clDice metric in Tab. 1. For clDice, we use
the weight with the highest clDice metric for each dataset
from their paper. For CLD, we choose the same weight for
clDice as for the optimized compound clDice.



Omitted Methods. We compare against clDice loss [2],
a state-of-the-art topology-aware segmentation loss, which
defines the skeleton of predictions and ground truth as critical
pixel mask. clDice and [7] only differ in Lpixel. clDice
and [3] only differ in the skeleton algorithm, having the same
Lpixel and critical pixel mask. [4] is the multi-class adaption
of clDice with a different Lpixel and a reduced critical pixel
mask in comparison to clDice that only includes the slightly
dilated ground truth skeleton for computational efficiency.
Additionally, [4] removes small structures during training
which makes it difficult to point out from which design-
choice their reported improvement over clDice (no removed
structures) originates. However, as [4] note themselves an
inferior skeleton extraction for binary segmentation com-
pared to clDice, we suspect their critical pixel mask selection
to be inferior to clDice in binary segmentation as it doesn’t
consider false positive connections.

Our proposed method can be adapted with any skeleton
extraction and Lpixel. Hence, we focus on validation against
methods with a distinctly different critical pixel mask se-
lection strategy. Therefore, we don’t validate against [3, 7]
and [4], which use different skeletonization methods or Lpixel

than clDice but not superior critical pixel masks. CLoss
outperforming compound clDice implies CLoss outperform-
ing [3, 4, 7].

We would have liked to compare against [6] but weren’t
able to reproduce their results. We could only reproduce their
proposed critical pixel mask for the 2D datasets but not on our
3D CLD. We suspect that this might be caused by the complex
3D surface structure in our CLD. Initial training attempts with
the original code from their repository resulted in numerous
errors for the 2D and 3D datasets, which we could only fix
for the 3D datasets. However, related work [4, 7, 11, 12] also
doesn’t report results on [6], so the implementation of [6]
might be a common issue.

There also exist numerous other topology-preserving ap-
proaches that we don’t compare against, since this would go
well beyond the scope of this paper. These other approaches
are not based on critical pixel masks and include for example
graph-based approaches [11] ( [11] only works with 2D
data) or approaches entirely based on post-processing [12]
(omits to improve topology correctness already in the image
domain). We note that [12] can be complemented with our
proposed method.

A.6. Evaluation Metrics

Evaluation patch sizes. We evaluated the Dice metric re-
spectively over the whole test samples for the used 2D and
3D datasets.

As mentioned in Sec. 2.2, e0 is not able to capture gaps if
it is computed over the whole image for datasets with high
overall connectivity. We calculate the metrics on patch sizes
which provide meaningful evaluation for the used datasets.
We iterate over the whole image shape with the patches as
sliding window (similar to [7]) instead of sampling patches
randomly for evaluation like [2, 5, 6, 11].

For 2D datasets, we evaluate clDice and AGS on the whole
image. We calculate betti-metrics and e0-Gt on patches,
375² (Roads) and 292² (HRF-Retina).

For the 3D dataset Vessap, we calculate clDice, AGS and
e0-Gt over the whole sample volume. We calculate betti-
metrics on full image size along the z-direction.

For our 3D CLD, we calculate clDice, AGS and e0-Gt over
patches of 1024² × 64, where we also consider corrections
of the clDice metric for its shortcoming with empty patches.
We note that this patching in comparison to Vessap is due to
memory reasons. Further, we evaluate betti-metrics on full
image size along the z-direction.

A.7. Implementation Details

We conduct all our trainings within the nnU-Net frame-
work [9] to ensure a maximum of reproducibility and leading
performance [20]. The nnU-Net standard training has a
length of 1000 epochs and utilizes Dice and Cross-Entropy
as equally weighted compound loss. Training is done with
a five-fold cross-validation for all methods. Inference is
by standard done with all five folds simultaneously as an
ensemble.

For our 2D datasets, we use the nnU-Net configuration 2d.
For our 3D datasets, we use the configuration 3d fullres.

We used the standard nnU-Net configuration for all meth-
ods, meaning our results can be reproduced with any GPU
that has more than 11 GB VRAM. For increased speed, we
conduct all trainings on A100 GPUs. As our used datasets
are comparably small, we use the standard nnU-Net configu-
ration without the residual encoder presets. We use PyTorch
framework version 2.3.0 to implement our proposed method.

The nnU-Net configured a batch size of two for all datasets.
The patch sizes for the 2D datasets were configured by nnU-
Net to 1280 × 1024 (Roads), 1536 × 1024 (HRF-Retina)
and for the 3D datasets to 256² × 32 (Vessap) and 160² ×
90 (CLD).



A.8. Additional Discussion of Quantitative Results

HRF-Retina. CLoss has the smallest error on the num-
ber of connected components (e0) in all datasets except for
HRF-Retina. We attribute the value for HRF-Retina to the
mentioned susceptibility of e0 to artifacts (Sec. 2.2) from the
patch-based evaluation. The artifact distortion of e0 is indi-
cated by e0-Gt, AGS, and the clDice metric. Our proposed
metrics e0-Gt and AGS clearly show a better gap closing of
CLoss. Additionally, also the clDice metric of CLoss for
HRF-Retina is significantly improved (about 2%) over its
closest competing method. The clDice metric is especially
reliable for HRF-Retina due to the smooth surface structure
of the vessels. This indicates a better topology performance
of CLoss for HRF-Retina despite the seemingly unfavorable
e0 value.

Vessap. For the Vessap dataset, we observe that the best
clDice score is achieved by the topology-insensitive nnU-
Net (pretraining). This seems to contradict with the other
topology-sensitive metrics. Therefore, we suspect that the
thin network 3D structures of Vessap could lead to many
seemingly false positive predictions of the prediction skele-
ton, which distorts the topological sensitivity of the clDice
metric on this dataset, see Fig. 4. This hypothesis is supported
by an increasing AGS score for the topological fine-tuned
methods. We also note that the seemingly high e0 values
for Vessap come from our patch-based evaluation of (full 2D
image sizes stepping along the z-direction) in combination
with the 3D network structure of Vessap. We note that e1 in
this context can especially contain artifacts from the slicing.
Therefore, a minimized e0 indicates topological performance
on Vessap more reliable than minimized e1.

CLD. The unmodified clDice loss only has a better gap
closing (better e0-Gt and AGS) than our standard CLoss on
CLD. Importantly, this is only due to a different pixel-wise
loss and not due to the different critical pixel mask. We verify
this by adding results of CLoss (Dice) to CLD, which has the
same pixel-wise loss function as clDice and only differs in the
critical pixel mask to the clDice loss. CLoss (Dice) visibly
outperforms clDice on the topology metrics. Interestingly,
CLoss (Dice) is better than our proposed standard CLoss in
e1, e0-Gt, and AGS but not in clDice, e, and e0. This indicates
that the target structure of our CLD favors different Lpixel for
different metrics, which is not the case for the other datasets
(compound clDice consistently better or comparable to orig-
inal clDice). The favoring of different Lpixel for different
metrics further illustrates the increased complexity of CLD
over the other datasets.

A.9. Ablations

Additional results of the compound clDice optimization are
displayed in Tab. 2. We show the results on Roads as an

example, but conducted the optimization for all datasets.

Additional results of the post-processing are displayed in
Tab. 3. All metric values in this example improve except
for e1, which remains the same, and AGS, which slightly
decreases. All methods benefit from our post-processing in
a similar quantity. It can be observed for all results, that the
change in the Dice value is comparably small to the change in
e. This indicates, that our post-processing primarily removes
noise in the form of small separated structures.

Ablations for the fine-tuning length are displayed in Tab. 4. A
shorter fine-tuning length seems preferable, although we note
that there is no consistent trend between the different lengths.
For more detailed ablations on the fine-tuning between 50
epochs and 100 epochs, there was no clear winner, as might
be falsely suggested by Tab. 4. Hence, we chose 50 epochs
for computational efficiency.

Additional ablations for the critical pixel mask are included
in Tab. 5. We include Thin CLoss, which has a critical pixel
extraction analog to CLoss except for the context extraction.
Therefore, Thin CLoss only considers the skeleton at the
topological errors. Our proposed critical pixel mask with
context extraction yields significantly better topological cor-
rectness. CLoss seems only second best in e1 to compound
clDice (γ = 0.1), but the other bad metric values of com-
pound clDice (γ = 0.1) indicate that this is likely not due to
overall topological correctness but rather related to artifacts.

An ablation on Lpixel is included in Tab. 6. clDice and
compound clDice differ only in Lpixel. clDice has LDice,
and compound clDice the equally weighted combination of
LDice and LCE , analogue to our CLoss implementation.
Compound clDice performs better on average for Roads,
HRF-Retina, and Vessap. For CLD we note an advantage for
clDice.



Table 2: Compund clDice Fine-Tuning. Example for Roads dataset. All results are post-processed.

Method Weight γ Dice↑ clDice↑ [2] e↓ e1↓ e0↓ e0-Gt↓ AGS↑
nnU-Net [9] 79.69 89.34 1.181 0.895 0.286 0.702 86.46
Dice & CE 79.77 89.37 1.156 0.949 0.207 0.699 86.41

Compound clDice 0.1 79.69 89.26 1.089 0.866 0.223 0.691 86.78
0.2 79.59 89.12 1.082 0.880 0.202 0.708 86.87
0.3 79.73 89.34 1.108 0.909 0.199 0.673 87.05
0.4 79.68 89.26 1.125 0.915 0.210 0.677 87.05
0.5 79.59 89.21 1.065 0.870 0.195 0.673 87.25

CLoss 0.08 79.82 89.47 1.065 0.880 0.185 0.656 87.70
0.1 79.57 89.21 0.990 0.810 0.180 0.617 87.88
0.2 79.12 89.13 0.994 0.788 0.205 0.494 89.48

Table 3: Post-Processing. Results for CLD.

Post-Processing Method Weight γ Dice↑ clDice↑ [2] e↓ e1↓ e0↓ e0-Gt↓ AGS↑
w/o Dice & CE 70.23 85.17 3.615 1.075 2.540 2.479 82.03
with 70.27 85.23 3.422 1.075 2.347 2.447 82.02
w/o Compound clDice 0.5 70.58 85.39 3.325 1.065 2.259 2.176 82.67
with 70.61 85.45 3.165 1.065 2.099 2.150 82.66
w/o CLoss 0.2 70.41 86.75 3.224 1.047 2.177 1.916 85.99
with 70.44 86.83 3.020 1.047 1.973 1.899 85.98

Table 4: Fine-tuning length. Results for CLD. All results are post-processed.

Epochs Method Weight γ Dice↑ clDice↑ [2] e↓ e1↓ e0↓ e0-Gt↓ AGS↑
50 Compound clDice 0.5 70.61 85.45 3.165 1.065 2.099 2.150 82.66

100 70.67 85.37 3.108 1.062 2.046 2.086 82.79
150 70.58 85.22 3.097 1.064 2.034 2.180 82.19
300 70.65 85.44 3.115 1.053 2.062 2.097 82.71
50 CLoss 0.1 70.75 86.26 3.109 1.069 2.040 2.040 84.44

100 70.77 86.25 3.046 1.050 1.996 2.010 84.78
150 70.46 85.64 3.173 1.062 2.110 2.218 83.02
300 70.51 85.34 3.075 1.060 2.015 2.079 82.39

Table 5: Critical pixel mask. Results for CLD. All results are post-processed. All methods differ only in the critical pixel
mask.

Critical pixel mask Method Weight γ Dice↑ clDice↑ [2] e↓ e1↓ e0↓ e0-Gt↓ AGS↑
w/o Dice & CE 70.27 85.23 3.422 1.075 2.347 2.447 82.02

Full skeleton Compound clDice 0.1 68.93 83.11 3.522 1.029 2.493 2.679 79.06
0.2 70.47 84.96 3.361 1.077 2.283 2.352 81.81
0.3 70.61 85.41 3.230 1.077 2.153 2.249 82.80
0.4 70.51 85.16 3.287 1.063 2.223 2.283 82.26
0.5 70.61 85.45 3.165 1.065 2.099 2.150 82.66

Skeleton at topological errors Thin CLoss 0.08 70.33 85.06 3.353 1.087 2.266 2.438 81.53
0.2 69.76 84.39 3.356 1.095 2.261 2.492 79.66
0.5 69.62 84.05 3.475 1.091 2.383 2.643 79.29

Context at topological errors CLoss 0.08 70.98 86.22 3.158 1.063 2.095 2.061 84.47
0.1 70.75 86.26 3.109 1.069 2.040 2.040 84.44
0.2 70.44 86.83 3.020 1.047 1.973 1.899 85.98



Table 6: Pixel-wise loss. We focus on ablation between LDice and our Lpixel used for CLoss. All results are post-processed.

Dataset Method Weight γ Dice↑ clDice↑ [2] e↓ e1↓ e0↓ e0-Gt↓ AGS↑

Roads clDice [2] 0.5 79.50 89.11 1.126 0.897 0.230 0.710 87.07
Compound clDice 0.5 79.59 89.21 1.065 0.870 0.195 0.673 87.25

HRF-Retina clDice [2] 0.5 82.15 83.09 0.426 0.256 0.170 2.475 82.23
Compound clDice 0.5 82.33 82.98 0.405 0.250 0.155 2.429 81.25

Vessap clDice [2] 0.4 92.70 94.86 29.00 1.240 27.76 9.44 97.74
Compound clDice 0.4 92.98 95.42 26.880 1.220 25.660 11.040 97.28

CLD
clDice [2] 0.5 70.88 86.22 3.374 1.042 2.333 1.825 87.11

Compound clDice 0.5 70.61 85.45 3.165 1.065 2.099 2.150 82.66


