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1. BENCHMARK EVALUATION ON MOT17 AND
MOT20

Main performance metrics for MOT are HOTA, IDF1, and
AssA [1]. HOTA assesses both detection and association ac-
curacy. IDF1 and AssA primarily evaluate association perfor-
mance, while MOTA is predominantly focused on detection
accuracy. In our results tables, ↑means the higher, the better,
and ↓means the lower, the better. Bold numbers indicate the
best performance. We adopt YOLOX [2] as the default object
detector. In our results tables, MOT methods that also use
YOLOX as the detector are highlighted in blue.

MOT17 and MOT20 are well-established pedestrian
tracking benchmarks characterized by relatively linear mo-
tion patterns compared to DanceTrack and SportsMOT hav-
ing non-linear motion. MOT17 consists of urban scenes
with moderate crowd density and occasional occlusions,
while MOT20 presents highly crowded environments. These
datasets are widely used for evaluating tracking performance
in dense, urban scenarios with largely predictable pedestrian
trajectories. However, their focus on objects with temporally
consistent orientations relative to the camera differs from the
dynamic, non-linear motion patterns that DepthMOT is opti-
mized for. We evaluate DepthMOT on MOT17 and MOT20
under the private detection protocol, as shown in Table 1.

MOTRv2 [3], a joint detection-ReID framework, de-
signed for non-linear motion, underperforms on the linear
motion datasets MOT17 and MOT20 (see Table 1). Track-
ers based on linear motion models, such as CMTrack [4],
MotionTrack [5], and Deep OC-SORT [6], excel in MOT17
and MOT20 due to the predictable pedestrian trajectories. In
contrast, DiffMOT [7] and our DepthMOT perform better in
more dynamic scenarios like DanceTrack and SportsMOT
(as shown in our main manuscript). Both non-linear models
face challenges in MOT17 and MOT20, where linear motion
models tend to be more effective.

Additionally, as illustrated in Fig. 1, zero-shot depth es-
timation encounters challenges in low-light conditions, pro-
ducing low-contrast depth maps that make it difficult to dis-
tinguish distant objects. This limitation affects the accuracy
of DepthMOT on MOT17 and MOT20. Despite these chal-
lenges, DepthMOT achieves the lowest false positive (FP) rate
of 1.3, demonstrating the effectiveness of HAS in reducing

false associations and track fragmentation.

While DepthMOT is not explicitly trained on each MOT
dataset, it still performs competitively in high-occlusion en-
vironments and showcases strong adaptability across diverse
tracking scenarios.

MOT17

Tracker HOTA↑MOTA↑ IDF1↑FP(104)↓FN(104)↓ IDs↓ Frag↓AssA↑AssR↑

FairMOT [8] 59.3 73.7 72.3 2.75 11.7 3,303 8,073 58.0 63.6
TransTrack [9] 54.1 75.2 63.5 5.02 8.64 3,603 4,872 47.9 57.1
MOTR [10] 57.2 71.9 68.4 2.11 13.6 2,115 3,897 55.8 59.2
CenterTrack [11] 52.2 67.8 64.7 1.8 1.6 3,039 - - -
MeMOTR [12] 58.8 72.8 71.5 - - - - 58.4 -
DiffusionTrack [13] 60.8 77.9 73.8 - - 3,819 4,815 58.8 -
MixSort-OC [14] 63.4 78.9 77.8 - - 1,509 - 63.2 -
MixSort-Byte [14] 64.0 78.9 78.7 - - 2,235 - 64.2 -
C-BIoU [15] 64.1 81.1 79.7 - - - - 63.7 -
MOTRv2 [3] 62.0 78.6 75.0 - - - - 60.6 -

GHOST [16] 62.8 78.7 77.1 - - 2,325 - - -
ByteTrack [17] 63.1 80.3 77.3 2.55 8.37 2,196 2,277 62.0 68.2
OC-SORT [18] 63.2 78.0 77.5 1.51 10.8 1,950 2,040 63.2 67.5
StrongSORT [19] 63.5 78.3 78.5 - - 1,446 - 63.7 -
GeneralTrack [20] 64.0 80.6 78.3 - - 1,563 - 63.1 -
StrongSORT++ [19] 64.4 79.6 79.5 2.79 8.62 1,194 1,866 64.4 71.0
Deep OC-SORT [6] 64.9 79.4 80.6 1.66 9.88 1,023 2,196 65.9 70.1
MotionTrack [5] 65.1 81.1 80.1 2.38 8.16 1,140 - - -
CMTrack [4] 65.5 80.7 81.5 2.59 8.19 912 1,653 66.1 -
*DiffMOT [7] 64.5 79.8 79.3 - - - - 64.6 -
*DepthMOT 62.7 76.5 77.9 1.3 11.7 1,342 - 63.6 68.8

MOT20

Tracker HOTA↑MOTA↑ IDF1↑FP(104)↓FN(104)↓ IDs↓ Frag↓AssA↑AssR↑

FairMOT [8] 54.6 61.8 67.3 10.3 8.89 5,243 7,874 54.7 60.7
DiffusionTrack [13] 55.3 72.8 66.3 - - 4,117 4,446 51.3 -
MOTRv2 [3] 60.3 76.2 72.2 - - - - 58.1 -

GHOST [16] 61.2 73.7 75.2 - - 1,264 - - -
ByteTrack [17] 61.3 77.8 75.2 2.62 8.76 1,223 1,460 59.6 66.2
GeneralTrack [20] 61.4 77.2 74.0 - - 1,627 - 59.5 -
StrongSORT [19] 61.5 72.2 75.9 - - 1,066 - 63.2 -
OC-SORT [18] 62.1 75.5 75.9 1.80 10.8 913 1,198 62.0 67.5
StrongSORT++ [19] 62.6 73.8 77.0 1.66 11.8 770 1,003 64.0 69.6
MotionTrack [5] 62.8 78.0 76.5 2.86 8.41 1,165 1,321 61.8 -
Deep OC-SORT [6] 63.9 75.6 79.2 1.69 10.8 779 1,536 65.7 70.8
CMTrack [4] 64.8 76.2 79.9 2.22 10.04 730 987 66.7 -
*DiffMOT [7] 61.7 76.7 74.9 - - - - 60.5 -
*DepthMOT 62.4 73.2 77.3 1.3 12 1,141 - 64.3 68.6

Table 1. Results on MOT17-test and MOT20-test. Meth-
ods in the blue blocks use the same YOLOX detector. The
methods with * indicate that they are non-linear models. As
can be seen, no tracker performs best across metrics and
datasets. Our DepthMOT has the lowest false positive (FP).



Fig. 1. Challenges. An example of zero-shot depth estimation and PVS modules, emphasizing the encountered challenges
under different lighting conditions in the MOT20 dataset. The highlighted area, marked by a dotted square, illustrates that the
depth map of certain objects is not accurately predicted.

2. VISUAL RESULTS

Fig. 2 and Fig.3 illustrate tracking performance of our Depth-
MOT framework on challenging sequences from the Dance-
Track and SportsMOT datasets, respectively. Additionally,
Fig. 4 and Fig.5 showcase the results of DepthMOT on
MOT17 and MOT20. For enhanced visualization, bound-
ing boxes of individuals with similar IDs are displayed in
similar colors, with the unique ID indicated in red at the top
of each bounding box. However, some colors may appear vi-
sually similar due to the high density of individuals in specific
frames.



Fig. 2. Examples. DanceTrack tracking results



Fig. 3. Examples. SportsMOT tracking results

Fig. 4. Examples. MOT17 tracking results



Fig. 5. Examples. MOT20 tracking results
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B. Leibe, “HOTA: A Higher Order Metric for Evaluating Multi-object
Tracking,” Int. J. Comput. Vis., vol. 129, pp. 548–578, 2021.

[2] G. Zheng, L. Songtao, W. Feng, L. Zeming, S. Jian et al., “Yolox: Ex-
ceeding yolo series in 2021,” arXiv preprint arXiv:2107.08430, 2021.

[3] Y. Zhang, T. Wang, and X. Zhang, “MOTRv2: Bootstrapping End-to-
End Multi-Object Tracking by Pretrained Object Detectors,” in IEEE
Conf. Comput. Vis. Pattern Recog., 2023, pp. 22 056–22 065.

[4] K. Shim, J. Hwang, K. Ko, and C. Kim, “A Confidence-Aware Match-
ing Strategy for Generalized Multi-Object Tracking,” in IEEE Int. Conf.
Image Process. IEEE, 2024, pp. 4042–4048.

[5] C. Xiao, Q. Cao, Y. Zhong, L. Lan, X. Zhang, Z. Luo, and D. Tao,
“MotionTrack: Learning motion predictor for multiple object track-
ing,” Neural Networks, vol. 179, p. 106539, 2024.

[6] G. Maggiolino, A. Ahmad, J. Cao, and K. Kitani, “Deep OC-SORT:
Multi-Pedestrian Tracking by Adaptive Re-Identification,” in IEEE Int.
Conf. Image Process. IEEE, 2023, pp. 3025–3029.

[7] W. Lv, Y. Huang, N. Zhang, R.-S. Lin, M. Han, and D. Zeng, “Diff-
Mot: A Real-time Diffusion-based Multiple Object Tracker with Non-
linear Prediction,” in IEEE Conf. Comput. Vis. Pattern Recog., 2024,
pp. 19 321–19 330.

[8] Y. Zhang, C. Wang, X. Wang, W. Zeng, and W. Liu, “FairMot: On the
Fairness of Detection and Re-identification in Multiple Object Track-
ing,” Int. J. Comput. Vis., vol. 129, pp. 3069–3087, 2021.

[9] P. Sun, J. Cao, Y. Jiang, R. Zhang, E. Xie, Z. Yuan, C. Wang, and
P. Luo, “TransTrack: Multiple Object Tracking with Transformer,”
arXiv preprint arXiv:2012.15460, 2020.

[10] F. Zeng, B. Dong, Y. Zhang, T. Wang, X. Zhang, and Y. Wei, “MOTR:
End-to-End Multiple-Object Tracking with Transformer,” in Eur. Conf.
Comput. Vis. Springer, 2022, pp. 659–675.
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