
SUPPLEMENTARY MATERIALS FOR EVENT DENOISING BASED ON ITERATIVE
TREE-STRUCTURED INFORMATION AGGREGATION

1. SCHEMATIC DIAGRAM OF THE ITERATIVE
INFERENCE PROCESS

The iterative inference process can be divided into two steps
which is illustrated in Figure 6. The detailed description is as
follows:

(1) Establish connections. For the current event enew =
{xnew, ynew, tnew, pnew}, identify the pixel set satisfying
x ∈ [xnew −W,xnew +W ] and y ∈ [ynew −H, ynew +H]
(excluding (xnew, ynew)) and find events with timestamps
greater than tnew − T as child nodes from the time regis-
ter. If the number of satisfying pixels exceeds the tree degree
Kd, use nearest neighbor pruning (NNP) to select the near-
est points. The results of the above process correspond com-
pletely to those in Section 3.1.

(2) Feature aggregation. After determining the child
events of the latest event, the x and y coordinates along with
the timestamp of the child events form the 0th-order feature
set. Applying the first-order convolution from Section 3.2 to
the child nodes’ 0th-order features yields the latest event’s
1st-order features. Next, reset and write operations are per-
formed: select the register group with the smallest value in
the timestamp register at the pixel of the latest event, update
it with the latest timestamp tnew, set the feature registers from
1st to D−1 to 0, and write the new event’s first-order features
into the reset feature registers. If the event has no child nodes,
it is still necessary to reset and write to the time register.

The higher-order convolution of the algorithm is the same
as the 1st-order convolution, and the classification module is
consistent with the one introduced in Section 3.2.

2. ABLATION STUDY

The ablation experiments investigate the effects of the atten-
tion branch in high-order convolution modules, the depth D
of the Relation Tree, and the degree Kd of the Relation Tree
across three key aspects, as summarized in Table 3.

In the detailed experimental setup, the role of the attention
branch in high-order convolution modules is analyzed by re-
moving the branch and retraining the model for evaluation.
For the depth of the Relation Tree, configurations of D = 1,
D = 2, and D = 4 are explored, while for the degree of the
Relation Tree, values of Kd = 8, Kd = 16, and Kd = 48 are
tested. To ensure the independence of variables, other mod-

ules remain unchanged during these experiments. The accu-
racy is evaluated across 16 scenes from the DVSNOISE20
dataset, and the average performance is reported.

Table 3. Ablation test of our algorithm
Attention Tests Removed
AUC 0.813

Depth Tests D = 1 D = 2 D = 4
AUC 0.688 0.792 0.870

Degree Tests Kd = 8 Kd = 16 Kd = 48
AUC 0.783 0.845 0.869

Original AUC = 0.867

From the ablation experiments, we observe that the at-
tention mechanism effectively aggregates useful information,
thereby enhancing denoising accuracy. Increasing the depth
and degree of the Relation Tree significantly improves de-
noising performance; however, this improvement becomes
marginal when the tree depth reaches D = 4 and the de-
gree reaches Kd = 48. This suggests that D = 3 and
Kd = 32 are sufficient for capturing spatiotemporal corre-
lations in event streams. Further increasing D to 4 or Kd to
48 results in higher computational costs during the inference
phase, reducing inference speed without providing substantial
performance gains.

3. VISUALIZATION

To visually demonstrate the denoising effects, we visualize
selected scenes from the DVSNOISE20 dataset. In this pro-
cess, the event data over a specific time period is converted
into frames for display. Positive polarity events are repre-
sented in red, while negative polarity events are shown in
blue. The results are presented in Figure 7. From the fig-
ure, it can be seen that our method effectively removes noise
while preserving useful event information compared to other
methods.



Fig. 6. Illustration of iteration inference process. In the iterative inference process, the sub-node selection is performed first,
followed by sequential convolution. For clarity, we set Kp = 1, which indicates that only one register group is depicted for
each pixel in the figure.

Fig. 7. Visualization of event denoising frames. This figure uses the stairs scene from the DVSNOISE20 dataset to illustrate
the denoising effects.


