APPENDIX

A. Dataset Splits and Training Details

The number of images and text samples in the CUB-200 and
Oxford-102 datasets, along with their dataset splits, are sum-
marized in Table 4. The proposed RobustTGIC is imple-
mented in PyTorch and optimized using the Adam optimizer
with a batch size of 8. Our model is trained for 150 epochs,
followed by an additional 10 epochs of fine-tuning when han-
dling missing modalities. The learning rate is set to 1 x 1074,
The hyperparameters of the loss function, kg, kp, kg, and a,
are empirically set to 0.075 X 2755, 0.15, and 4, respec-
tively. The rate control parameter \ is set to (23, 22, 2, 20)
depending on the target bit rate.

Table 4. Training/Testing set of CUB-200 and Oxford-102
Datasets

Dataset Training Testing Total Text Caption
CUB-200 8855 2933 11788 10/ image
Oxford-102 7034 1155 8189 10 / image

B. Visualization of Fine-Tuning Effects

Figure 8 presents the visualized reconstructed images before
and after text modality missing, as well as after missing-
modality fine-tuning. When the text is missing, the recon-
structed image quality significantly degrades, with notice-
able color distortion, especially in the background regions.
However, after fine-tuning, the image quality substantially
improves, showing only a slight decrease compared to the
non-missing case, with no perceptible quality difference.

Finetuned

With text

Without text
%

0.388bpp PSNR:25.70dB 0.398bpp PSNR:29.60dB

0.395bpp PSNR:29.90dB

Fig. 8. Visual Comparison Before and After Modality Miss-
ing, as Well as After Fine-Tuning.

&-e.trlz:;ned
e S
lg 3& v
P—
}r
(a) LoRA
& / DWconv
‘ II N i <
Adapter Nonlinearity
. f . \
| PWconv

‘ '
\
\
\
(b) Adapter

Fig. 9. Structure illustration of LoRA and Adapter.

C. Efficient Fine-Tuning Methods

The LoRA method, illustrated in Figure 9(a), freezes the
pretrained layers during fine-tuning and inserts two trainable
low-rank matrices, A and B, into the layer. The final output
is obtained by adding the output of the low-rank matrices to
the frozen pretrained model’s output. In contrast, the Adapter
method, as shown in Figure 9(b), inserts an adaptation mod-
ule after the pretrained model to enable efficient fine-tuning.

