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Fig. 1: Overview of Stencil. Given a few (a) reference images, Stencil achieves (b) subject-driven generation and (c) subject
editing with high textual and subject fidelity in just 100 fine-tuning steps.

ABSTRACT

The emergence of text-to-image diffusion models marked a
revolutionary breakthrough in generative AI. However, train-
ing a text-to-image model to consistently reproduce the same
subject remains a challenging task. Existing methods often
require costly setups, lengthy fine-tuning processes and strug-
gle to generate diverse, text-aligned images. Moreover, the
increasing size of diffusion models over the years highlights
a scalability challenge for previous fine-tuning methods, as
tuning on these large models is even more costly. To ad-
dress these limitations, we present Stencil. Stencil leverages
a large diffusion model to contextually guide a smaller fine-
tuned model during generation. This allows us to combine
the superior generalization capabilities of large models with
the efficient fine-tuning of small models. Stencil excels at
generating high-fidelity, novel renditions of the subject and

can do so in just 30 seconds, nearly ×20 faster than Dream-
Booth, delivering state-of-the-art performance and setting a
new benchmark in subject-driven generation.

Index Terms— Computer Vision, Diffusion Models, Im-
age Editing, Subject-Driven Generation

1. INTRODUCTION

Text-to-image (T2I) diffusion models [1] have demonstrated
remarkable success in producing high-quality, text-aligned
images. Subject-driven generation builds on T2I models to
enable customization of generated subject characteristics, and
remains an active area of research.

The emergence of transformer-based T2I diffusion mod-
els [2] marks a shift towards increasingly larger architectures.
This has made previous fine-tuning methods [3, 4, 5] for
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Fig. 2: Stencil Framework. In (a) Context Guidance, we take an input image either generated by a large pre-trained model
(Stencil Generator) or provided by the user for generation and editing tasks, respectively. The image is inverted and fed into a
smaller fine-tuned model to refine subject representations in alignment with reference images. In (b) Fine-Tuning, we obtain
the cross-attention map for the subject token via a single denoising step of the noisy latent of the reference images. The cross-
attention map is applied to the loss function to guide the U-Net to focus precisely on learning pixels where the subject is present.

subject-driven generation, designed for smaller U-Net archi-
tectures, impractical for use in the latest models due to their
prohibitive computational costs. This underscores the need
for more efficient subject-drive generation techniques to har-
ness the generation capabilities of the latest T2I models.

To address these challenges, we propose Stencil. Stencil
employs context guidance, where we use a large pre-trained
diffusion model to guide the generation process of a smaller
fine-tuned model during inference. This approach enables the
generation of diverse and high-quality images comparable to
those from large diffusion models without the significant cost
of training them. During fine-tuning, Stencil employs the
Cross-Attention Guided Loss Function to mask the loss of ir-
relevant background and foreground elements. This approach
simplifies optimization and reduces fine-tuning by guiding the
model to focus on relevant subject pixels instead of process-
ing reference images uniformly. Stencil supports image edit-
ing (Fig. 1) and achieves state-of-the-art (SOTA) results in
generation while being ×20 faster than DreamBooth, making
it an incredibly cheap and effective model. We summarize our
main contributions as follows:

• We propose Stencil, a novel fine-tuning method for
subject-driven generation. Stencil uses context guidance to
achieve high textual and subject fidelity at low costs.

• We propose the Cross-Attention Guided Loss, where we
apply a mask to the loss function to guide the model to learn
subject representation from the most relevant pixels.

• Our extensive experiments have validated the robustness
of our approach, achieving state-of-the-art results.

2. RELATED WORKS

Recent methods for subject-driven generation can be divided
into two camps - those that fine-tune the diffusion model on
the reference images during test-time [3, 6, 4, 5], and those
that train an additional structure to encode the reference im-
ages [7, 8, 9, 10, 11]. In this paper, we focus on the former.
Textual Inversion [6] optimizes token embeddings within text
prompts to better capture subject representation. DreamBooth
[3] fine-tunes the diffusion U-Net to bind the appearance of
a subject with specific class tokens. Custom Diffusion [4]
proposes to enhance efficiency by limiting fine-tuning to the
cross-attention layers of the U-Net. Despite these advance-
ments, we observe a problematic trend: as we shift towards
larger model architectures [2, 12], applying these fine-tuning
methods on the latest models become increasingly time con-
suming and computationally inefficient. To address this is-
sue, we propose context guidance (Sec. 3.4). Furthermore,
we observe that existing methods optimize every pixel of the
reference image, including irrelevant foreground and back-
ground details, which can complicate the optimization task.
To overcome this, we introduce the Cross-Attention Guided
Loss Function (Sec. 3.3).

3. METHOD

Fig. 2 provides an illustration of our method framework.
Stencil consists of a fine-tuning stage (Sec. 3.3 ) followed
by context guidance during inference (Sec. 3.4). Additional
fine-tuning techniques are discussed in Sec. 3.2.
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Fig. 3: Promoting Diversity with Action Descriptors.
Vanilla fine-tuning can result in over-fitting to the input im-
age layout. Without using action descriptors such as ‘sitting’
or ‘lying down’ during fine-tuning, the dog above retains the
same pose as in the reference images. Action descriptors pre-
vent the model from binding the subject token to a specific
layout, encouraging diversity.

3.1. Preliminaries

Text-to-Image Latent Diffusion Models. Diffusion models
consist of a forward and reverse diffusion process. During the
forward diffusion process, Gaussian noise ϵt ∼ N (0, 1) is
iteratively applied to the original image x0 over t time-steps
to convert an image into pure noise. Each intermediate sample
xt, where t ∈ {0, . . . , T}, satisfies:

xt =
√
αt x0 +

√
1− αt ϵ (1)

where 0 = αT < · · · < α0 = 1 are hyper-parameters of the
diffusion schedule. The reverse diffusion process tries to re-
move the noise that was added in the forward process by train-
ing a denoising U-Net network fθ(xt, t, ψ(P )), conditioned
on the text embedding ψ(P ), to predict the noise residual ϵt
added to the sample at time-step t− 1.

Latent diffusion models [13] reduce compute complexity
by applying the diffusion process on a lower-dimensional la-
tent space zt. The overall loss is computed as:

L = Ez0,ϵ,t,ψ(P )

[
∥ϵ− fθ(zt, t, ψ(P ))∥22

]
(2)

Cross-Attention Mechanism. In cross-attention, the deep
spatial features ϕ(zt) are linearly projected to a query Q =
ℓQϕ(zt), key K = ℓKψ(P ), and value V = ℓV ψ(P ) matrix
via learned projections ℓQ, ℓK , ℓV respectively. The attention
map is formulated as:

M = Softmax
(
QK⊤
√
d

)
(3)

where d is the latent projection dimension of the keys and
queries. The entry Mij defines the weight of the j-th token
on the pixel i. Intuitively, cross-attention maps bind each text
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Fig. 4: Understanding Encoder and Decoder Learning.
We fine-tune the entire U-Net on a single reference image.
Subsequently, we reset either the encoder or the decoder by
replacing their parameters with the pre-trained ones. We ob-
served that resetting the encoder preserves the object’s ap-
pearance but causes a loss of layout, whereas resetting the de-
coder preserves the layout but loses fine-grain image details.

token to specific regions of the image, which guides the place-
ment of textual elements in the generated image. The atten-
tion output ϕ̂(zt) = MV , which is a weighted average of the
values of V , is used to update the spatial features ϕ(zt) that
are propagated to the subsequent layers of the U-Net.

3.2. Decoupling Layout and Appearance

We observe that poor text-image alignment can easily cause
the model to over-fit to the layout of the reference images
during fine-tuning. Specifically, we find that the prompt, ‘A
[subject token] [action descriptor]’ is a lot less prone to over-
fitting than ‘A [subject token]’ (Fig. 3). We conclude that
this is due to language drift, where a prompt without an ac-
tion descriptor can cause the model to bind the subject tokens
to both the subject’s appearance and its layout. Action de-
scriptors can help disentangle appearance and layout by asso-
ciating them to two or more seperate tokens, hence enhancing
generalization capabilities. Thus, we propose to leverage a
vision-language model (VLM) to generate captions P that ad-
here to this format. This approach also removes the reliance
on class identifier tokens, as used in DreamBooth [3], thereby
speeding up fine-tuning by eliminating the need to train on
rare tokens and their semantic representations.

Additionally, we show that as spatial features propagate
through the U-Net, higher-frequency information is captured.
The shallower layers learn the structure, whereas the deeper
layers learn the finer appearances of the image (Fig.4). Since
subject-driven generation concerns the latter, we propose to
exclusively fine-tune the U-Net decoder blocks. This signifi-
cantly reduces the parameters that require fine-tuning.
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Fig. 5: Modifying τ We can control deviation from the template image by changing τ . Decreasing τ will allow the subject to
drift away and gradually align more closely with the reference images. Increasing τ preserves more template features.

3.3. Cross-Attention Guided Loss Function

Fine-tuning images uniformly can complicate the optimiza-
tion task and lead to slow convergence. To address this, we
leverage the cross-attention map of the subject token S to
guide the U-Net to focus on learning the subject. Specifi-
cally, we add t time-step noise to the reference images. We
then perform a single forward pass of the noisy latent, condi-
tioned on P (See Sec.3.2), through the fixed U-Net backbone.
During this forward pass, we save the cross-attention map of
S across all heads and layers. We then up-sample all the them
to the spatial resolution of the latent image, compute the mean
values, and normalize them to get an average cross-attention
map, M̂S . We define our new loss function as,

L = Ez0,ϵ,t,ψ(P )

[
∥1
M̂S>pt

· (ϵ− fθ(zt, t, ψ(P )))∥22
]

(4)

where 1
M̂S>pt

denotes a binary mask obtained from
the cross-attention map and threshold hyper-parameter pt.
Hence, the loss is applied only to the subject, rather than the
entire image. Effectively, we are guiding the U-Net to learn
the subject representation by telling it what to focus on.

3.4. Context Guidance

For inference, we utilize two seperate diffusion models to
perform subject-driven generation: a large pre-trained model
(stencil generator) as well as a smaller fine-tuned model (See
Sec. 3.3). The stencil generator produces high-fidelity tem-
plate images, while the fine-tuned model refines the subject
representations of those images. This allows us to leverage
the efficiency of fine-tuning smaller models and the high-
quality image generation of larger SOTA diffusion models.

Initially, the stencil generator fθ generates a template im-
age I conditioned on the target prompt PT . We then perform
null-text inversion [14] of I using the fine-tuned model f̂θ to
obtain the inverted latent x̂t and the optimized unconditional

embeddings ∅t at each time-step t. We then proceed to de-
noise x̂t with f̂θ. However, instead of injecting ∅t at every
time-step which would result in an almost perfect reconstruc-
tion of I , we halt at time-step τ . We denote this operation
as

ϵt =

{
f̂θ(zt, t, ψ(P ), ∅t) if t < τ

f̂θ(zt, t, ψ(P )) otherwise
(5)

We show empirically in Fig. 5 that this allows the subject
appearance to drift away from the template subject and to-
wards the reference subject while maintaining faithfulness to
the original image.

4. EXPERIMENTS

4.1. Experiment Setup

We use Stable Diffusion V1-5 [13] as our base diffusion
model, Stable Diffusion 3 Medium [2] as our stencil generator
and GPT-4o [15] as our VLM. Reference images are resized
to 512x512 resolution, center-cropped, and normalized. For
the cross-attention-guided loss function, we set the threshold
pt to 0.2. Fine-tuning is then performed in batches of 6 on a
single A100 GPU for 100 iterations at a learning rate of 2e-5.
Inference was performed with DDIM sampling [16], with a
step size of 50 and a guidance scale set to 7.5. For context
guidance, we set τ to 3.

4.2. Evaluation Metrics

We evaluate our model on the DreamBench dataset [3], con-
sisting of 30 subjects each represented by 4-7 reference im-
ages. Each subject is associated with 25 prompts. To as-
sess the subject consistency, we compute the DINO scores,
corresponding to the average pairwise cosine similarities be-
tween the ViT-S/16 DINO embeddings of generated and real
images. To assess text-to-image alignment, we compute the
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Fig. 6: Qualitative Results. Our results demonstrate close-to-perfect faithfulness to the references (bottom right corner)

Table 1: Quantitative comparison on Dreambench. The Bold and Underline represent first and second-ranked methods.

Type Method Base Model Subject Consistency (↑) Text Alignment (↑)

Fine-tuning

Textual Inversion [7] SDv1.5 0.569 0.255
DreamBooth [3] SDv1.5 0.668 0.305

Custom Diffusion [4] SDv1.5 0.643 0.305
Stencil (Ours) SDv1.5 0.671 0.328

Fine-tuning Free

ELITE [9] SDv1.4 0.621 0.293
BLIP-Diffusion [7] SDv1.5 0.594 0.300

IP-Adapter [11] SDXL 0.613 0.292
Kosmos-G [10] SDv1.5 0.618 0.250

Emu2 [10] SDXL 0.563 0.273
λ-eclipse [10] Kv2.2 0.613 0.307

SSR-Encoder [8] SDv1.5 0.612 0.308

CLIP-T scores, corresponding to the average cosine similarity
between prompt and image CLIP embeddings.

Method Text-Alignment Subject Consistency
Stencil 0.764 0.782

DreamBooth 0.173 0.153
Undecided 0.062 0.064

Table 2: User Study comparing Stencil to Dreambooth

5. EXPERIMENT RESULTS

5.1. Quantitative Evaluation

Table. 1 presents our quantitative evaluations. Stencil out-
performs all previous methods in both subject fidelity and
text-to-image alignment while being the most cost-effective
model to train. To our best knowledge, Stencil is the new
SOTA. Notably, Stencil performs significantly better than the
rest at producing semantically accurate images. This further
validates context guidance as a cheap and effective technique
to enhance generation capabilities of base models.

5.2. Qualitative Evaluation

Fig. 6 showcases images generated by Stencil. Compared
to other methods, Stencil excels at maintaining the subject’s
appearance and generating diverse layouts. This is because
we do not train the stencil generator on the reference images,
enabling it to generate completely unseen image structures.
Table. 2 presents results from our User Study.

6. CONCLUSION

In this paper, we introduced Stencil, an efficient fine-tuning
approach for subject-driven generation. Stencil incorporates
two key innovations: first, a cross-attention guided loss func-
tion that directs the network’s learning toward the subject,
enabling faster convergence; and second, context guidance,
where a large pre-trained diffusion model generates an image
template that a smaller fine-tuned model refines to achieve
precise subject alignment. This method also makes Stencil
the only fine-tuning method that is scalable, as it can contin-
ually benefit from advancements in T2I diffusion models to
further enhance image quality and text-to-image alignment at
no additional cost.
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