
HOW SHOULD WE EVALUATE DATA DELETION IN GRAPH-BASED ANN INDEXES?

Supplementary Material

A. MATHEMATICAL REPRESENTATION OF
EVALUATION METRICS

The 1-Recall@k, which represents search accuracy, is defined
as follows. Let nq be the number of queries, and for a given
query qi ∈ Rd, let gi ∈ {1, 2, . . . , n} denote the ground-
truth nearest neighbor. Additionally, let R̂i ⊂ {1, 2, . . . , n}
with |R̂i| = k represent the approximate k-nearest neighbors
obtained through ANNS. Defining f(·) as a function that re-
turns 1 if the condition is true and 0 otherwise, 1-Recall@k is
expressed as shown in Equation 1.

1-Recall@k =
1

nq

nq∑
i=1

f
(
gi ∈ R̂i

)
, (1)

In this study, we set k = 10 and use 1-Recall@10 to eval-
uate search accuracy. A higher recall indicates better search
accuracy.

To evaluate the query processing speed, we use Queries
Per Second (QPS). When processing nq queries in t seconds,
QPS is defined as shown in Equation 2:

QPS =
nq

t
[1/s] (2)

A higher QPS value indicates faster query processing. We
measure QPS-search to evaluate search speed, QPS-add to
evaluate data insertion speed, and QPS-delete to evaluate data
deletion speed. Additionally, we adopt the QPS-Recall curve
as an evaluation metric, where the horizontal axis represents
1-Recall@10, and the vertical axis represents QPS-search.
This curve is obtained by varying the search parameters of
HNSW. A curve positioned toward the upper right of the
graph indicates higher search performance.

B. ALL EXPERIMENTAL RESULTS

The experimental results for SIFT1M [1] are shown in Fig. A,
and those for GIST1M [1] are presented in Fig. B. The results
for SIFT2M [2] with a batch size of b = 105 are shown in
Fig. C, while those with b = 103 are given in Fig. D. In
the following sections, we discuss the experimental results
for each evaluation metric.

B.1. QPS-Recall

From Fig. A1, Fig. B1, Fig. C1, and Fig. D1, it is evident
that rebuilding maintains search performance even after re-

peated insertions and deletions. In contrast, logical deletion
significantly degrades search performance across all datasets
as insertions and deletions are repeated. The plotted points
in each graph indicate that both search accuracy and search
speed deteriorate in this case. Furthermore, the search per-
formance of physical deletion is slightly lower than that of
rebuilding across all datasets.

B.2. 1-Recall@10

From Fig. A2, Fig. B2, Fig. C2, and Fig. D2, it can be ob-
served that search accuracy in logical deletion decreases as
insertions and deletions are repeated. Additionally, the accu-
racy of rebuilding is the highest, followed by physical dele-
tion, which exhibits lower accuracy than rebuilding. Further-
more, Fig. C2 and Fig. D2 show that in physical deletion,
search accuracy stabilizes after a certain number of insertion
and deletion steps. This indicates that the structural proper-
ties of the graph become stable after a sufficient number of
operations. Moreover, a larger batch size results in a higher
converged accuracy. This suggests that when insertions and
deletions are performed repeatedly, a larger batch size facili-
tates better recovery of the graph structure during the insertion
process.

B.3. Memory Usage

From Fig. A3, Fig. B3, Fig. C3, and Fig. D3, it is evident
that memory consumption in logical deletion increases lin-
early with each step across all datasets. This indicates that
in logical deletion, the deleted data remains in memory. In
contrast, memory usage remains unchanged for both rebuild-
ing and physical deletion. This confirms that these methods
effectively reclaim memory space when data is deleted.

B.4. QPS-add

From Fig. A4, Fig. B4, and Fig. C4, it can be observed that
when data is inserted and deleted in batches of b = 105, the
data insertion speed remains unchanged. However, as shown
in Fig. D4, when the batch size is reduced to b = 103, the data
insertion speed in logical deletion exhibits significant varia-
tions at each step.

Additionally, when data insertion and deletion are per-
formed in batches of b = 105, physical deletion exhibits the
highest data insertion speed. This is likely because repeated

physical deletions gradually make the graph sparser, thereby
reducing the number of distance calculations required during
data insertion.

B.5. QPS-delete

From Fig. A5, Fig. B5, Fig. C5, and Fig. D5, it is evident
that across all datasets, logical deletion achieves the highest
data deletion speed, on the order of approximately 109[1/s].
In contrast, both rebuilding and physical deletion operate at
a significantly lower speed, at most on the order of 103[1/s].
When data insertion and deletion are performed in batches of
b = 105, logical deletion can be completed in approximately
10−4[s], whereas physical deletion requires up to 102[s].

From Fig. A5 and Fig. B5, it can be observed that the di-
mensionality of the inserted and deleted vectors affects only
the speed of rebuilding. SIFT1M [1] has a dimensionality of
128, whereas GIST1M [1] has a dimensionality of 960. This
difference impacts rebuilding because it requires distance cal-
culations during deletion. As the vector dimensionality in-
creases, the time needed for a single-distance calculation also
increases, leading to slower deletion speeds.

From Fig. C5 and Fig. D5, it can be observed that the
data deletion speed of physical deletion remains almost un-
changed regardless of the batch size b. This indicates that
physical deletion primarily involves memory operations for
the specified deletion queries, leading to a consistent process-
ing speed. Specifically, when the batch size is reduced from
b = 105 to b = 103, meaning the number of deletions per step
is reduced to 1/100, the deletion speed of physical deletion
remains nearly constant. In contrast, the speed of rebuilding
decreases by approximately a factor of 100. This is because
when the dataset size is relatively small, the processing time
required for rebuilding remains almost constant, regardless of
the number of deleted data points.

B.6. QPS-search

From Fig. A5, Fig. B5, Fig. C5, and Fig. D5, it is evident that
across all datasets, search speed is highest when using phys-
ical deletion. As discussed in Sec B.4, this is likely because
physical deletion gradually makes the graph sparser, reduc-
ing the number of distance calculations required during the
search.

Similarly, across all datasets, logical deletion results in
the slowest search speed. This is likely because, in logical
deletion, an additional operation is required after the standard
search process: the retrieved results must be filtered by refer-
encing a flag array to exclude deleted data.

C. REFERENCES

[1] Hervé Jégou, Matthijs Douze, and Cordelia Schmid,
“Product quantization for nearest neighbor search,” IEEE

transactions on pattern analysis and machine intelli-
gence, vol. 33, no. 1, pp. 117–128, 2010.

[2] Hervé Jégou, Romain Tavenard, Matthijs Douze, and
Laurent Amsaleg, “Searching in one billion vectors: re-
rank with source coding,” in 2011 IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2011, pp. 861–864.

0.8 1.0
1Recall@10

0

20000

40000

60000

80000

Q
PS

 [
1/

s]

logical:
step0
logical:
step5
rebuild:
step0
rebuild:
step5
physical:
step0
physical:
step5

(1) QPS-Recall

0 1 2 3 4 5
Step

0.78

0.80

0.82

0.84

1R
ec

al
l@

10

logical
rebuild
physical

(2) 1-Recall@10

0 1 2 3 4 5
Step

1000

1100

1200

1300

M
em

or
y

Us
ag

e
[M

B]

(3) Memory Usage

0 1 2 3 4 5
Step

5000

10000

15000

20000

25000

Q
PS

 a
dd

 [
1/

s]

(4) QPS-add

1 2 3 4 5
Step

100

102

104

106

108
Q

PS
 d

el
et

e
[1

/s
]

(5) QPS-delete

0 1 2 3 4 5
Step

80000

90000

100000

Q
PS

 s
ea

rc
h

[1
/s

]

(6) QPS-search

Fig. A: Performance comparison of the three deletion methods at each step on SIFT1M.

0.75 1.00
1Recall@10

0

2500

5000

7500

10000

Q
PS

 [
1/

s]

logical:
step0
logical:
step5
rebuild:
step0
rebuild:
step5
physical:
step0
physical:
step5

(1) QPS-Recall

0 1 2 3 4 5
Step

0.52

0.54

0.56

0.58

1R
ec

al
l@

10

logical
rebuild
physical

(2) 1-Recall@10

0 1 2 3 4 5
Step

6000

6500

7000

7500

8000

M
em

or
y

Us
ag

e
[M

B]

(3) Memory Usage

0 1 2 3 4 5
Step

100

200

300

Q
PS

 a
dd

 [
1/

s]

(4) QPS-add

1 2 3 4 5
Step

100

102

104

106

108

Q
PS

 d
el

et
e

[1
/s

]

(5) QPS-delete

0 1 2 3 4 5
Step

11000

11500

12000

12500

13000

Q
PS

 s
ea

rc
h

[1
/s

]

(6) QPS-search

Fig. B: Performance comparison of the three deletion methods at each step on GIST1M.

0.8 1.0
1Recall@10

0

20000

40000

60000

80000

Q
PS

 [
1/

s]

logical:
step0
logical:
step15
rebuild:
step0
rebuild:
step15
physical:
step0
physical:
step15

(1) QPS-Recall

3 6 9 12 15
Step

0.75

0.80

0.85

1R
ec

al
l@

10

logical
rebuild
physical

(2) 1-Recall@10

3 6 9 12 15
Step

1500

2000

2500

M
em

or
y

Us
ag

e
[M

B]

(3) Memory Usage

3 6 9 12 15
Step

5000

10000

15000

20000

25000

Q
PS

 a
dd

 [
1/

s]

(4) QPS-add

3 6 9 12 15
Step

100

102

104

106

108
Q

PS
 d

el
et

e
[1

/s
]

(5) QPS-delete

3 6 9 12 15
Step

80000

90000

100000

Q
PS

 s
ea

rc
h

[1
/s

]

(6) QPS-search

Fig. C: Performance comparison of the three deletion methods at each step on SIFT2M with b = 105.

0.8 1.0
1Recall@10

0

25000

50000

75000

100000

Q
PS

 [
1/

s]

logical:
step0
logical:
step1500
rebuild:
step0
rebuild:
step1500
physical:
step0
physical:
step1500

(1) QPS-Recall

300 600 900 1200 1500
Step

0.75

0.80

0.85

1R
ec

al
l@

10

logical
rebuild
physical

(2) 1-Recall@10

300 600 900 1200 1500
Step

1500

2000

2500

M
em

or
y

Us
ag

e
[M

B]

(3) Memory Usage

300 600 900 1200 1500
Step

0

2500

5000

7500

10000

Q
PS

 a
dd

 [
1/

s]

(4) QPS-add

300 600 900 1200 1500
Step

100

102

104

106

108

Q
PS

 d
el

et
e

[1
/s

]

(5) QPS-delete

300 600 900 12001500
Step

60000

80000

100000

Q
PS

 s
ea

rc
h

[1
/s

]

(6) QPS-search

Fig. D: Performance comparison of the three deletion methods at each step on SIFT2M with b = 103.

