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1. BASELINE ARCHITECTURE

1.1. Detailed baseline architecture

Overview. The network takes as input M and N visual
descriptors and keypoint positions from images A and B,
indexed by A := {1, ...,M} and B := {1, ..., N}, respec-
tively. Input descriptors and keypoint positions are denoted
as {0xI

i }i and {0pI
i }i, respectively, where I ∈ {A,B}.

The network updates descriptors by L attentional layers.
Finally, the network outputs a partial assignment matrix
P ∈ [0, 1]M+1×N+1 whose (i, j) element represents the con-
fidence that the i-th keypoint in the image A and the j-th one
in the image B are matched. The last column and rows of
P represents dustbins for unmatched keypoints. We obtain
point correspondences by selecting the pairs with confidences
larger than the threshold τ .

Positional encoding Our network uses positional encod-
ing that encodes absolute keypoint positions as in the existing
matchers [1, 2]. In our architecture, positional encoding is
performed in each layer. The positional encoding in the ℓ-th
layer is calculated as follows:

ℓ−1xI
i ←ℓ−1 xI

i +MLP(0pI
i ). (1)

where ℓ−1xI
i denotes descriptors updated from ℓ− 1-th layer.

Some keypoint detectors, e.g., SIFT [3], output the orientation
φi and scale ηi of each keypoint as well as the position. These
geometric information are added to the positinoal encodings
[4] as follows:

xI
i ← xI

i +MLP(
[
pI
i | cosφI

i | sinφI
i |ηIi

]
). (2)

Self-Cross attention. The ℓ-th attentioanl layer takes as
input descriptors {l−1xI

i }i and update them into {lxI
i }i. The

layer subscripts are omitted hereafter for ease of reading. De-
scriptors are updated on the basis of the message passing style
like SuperGlue as follows:

xI
i ← xI

i +MLP
([
xI
i |mI←S

i

])
, (3)

where MLP, [·|·], and mI←S denote a Multi-Layer Percep-
tron (MLP), concatenation, and a mesasge from a source im-
age S ∈ {A,B} to a target image I , respectively. The mes-
sages are calculated on the basis of the attention mechanism.
Self attention computes a message mI←I

i and cross atten-
tion does mI←S

i , where S = {A,B}\I . In the attention

computation, the descriptors are converted by learnable linear
transformations to queries, keys and values as qi = Wqx

I
i ,

kj = Wkx
S
j and vj = Wvx

S
j , respectively. Let K and V

be K = [k1, ...,k|S|] ∈ Rd×|S| and V = [v1, ...,v|S|] ∈
Rd×|S|, respectively. The message mI←S

i is computed by at-
tention as

mI←S
i

⊤
= Softmax

(
qi
⊤K√
d

)
V⊤. (4)

We extend all the above attentions to multi-head ones in prac-
tical implementation.

Matching module. This module in the ℓ-th block tem-
porarily performs matching to obtain an assignment matrix
P. The method of calculation is the same as the one proposed
in LightGlue. First, we calculate a score matrix S ∈ RM×N

as follows:

Si,j = Linear(xA
i )
⊤Linear(xB

j ), (5)

where Linear is a linear transformation with learnable param-
eters. Then, the score σI

i is computed as

σI
i = Sigmoid(Linear(xI

i )). (6)

Finally, an assignment matrix is obtained as

Pi,j = σA
i σ

B
j Softmax(Si,j)iSoftmax(Si,j)j . (7)

This matching method is faster than the sinkhorn algorithm
[5] used in some matchers [1, 2], and we can obtain an as-
signment matrix in each layer without large overhead.

2. TRAINING

2.1. An example of strong data augmentation

We performed strong data augmentation including large scale
and rotation as described in the paper. Fig. 1 shows an exam-
ple of an augmented image pair.

2.2. Other details about training

We trained local feature matchers by only MegaDepth dataset.
Unlike existing works [1, 6], homography pre-training is not
performed. For both SIFT and SuperPoint, we extract 2048



Fig. 1: An example of data augmentation

Fig. 2: An example of a rotated image pair (Rotation angle
is 225°).

keypoints from all the training images. We trained local fea-
ture matchers for 60 epochs without data augmentation. If we
perform the data augmentation, matchers are trained for 180
epochs since the training becomes difficult for matchers and
the convergence gets slow. We use the Adam optimizer with
the learning rate of 10−4, where, in the training with data aug-
mentation, the learning rate is exponentially decayed by 0.95
in each epoch after 120 epoch. Note that the parameters of
SuperPoint are frozen during training, and only matchers are
trained.

3. EXPERIMENTAL DETAILS

3.1. Experiments on Homography estimation

Experimental setup of rotation test. For rotation evalua-
tion, we rotate an image of an image pair from 0° to 315° in
45° increment, and 8 datasets are created for the respective ro-
tation angles. Fig. 2 shows an example of rotated image pairs.
We resize images so that their smaller dimension is 480 and
extract 1024 local features per images with NMS of 3 pixel.
Note that rotated images have the same resolution except for
the empty black areas in Fig. 2.

Experimental setup of rotation test. For scale evalua-
tion, one of two images is scaled by the factor of 1.0, 2.0 and
3.0 to create 3 datasets. Fig. 3 shows an example of scaled
image pairs. We resize reference images so that their smaller
dimension is 300 and extract 1024 local features per images
with NMS of 3 pixel. Target images are resized so that their

Fig. 3: An example of a scaled image pair (Scaling factor
is 3.0).

smaller dimension is 300, 600, and 900 for respective scaling
factors.

Experimental setup of SIM2E. For SIM2E dataset, we
resized all images so that their smaller dimension is 480 and
extract 1024 local features per images with NMS of 3 pixel.
Table 2 shows the results for overall SIM2E dataset. SN and
DA are effective also for SIM2E.

3.2. Experiments on MegaDepth1500

We resized images so that their larger dimension is 1600 and
extract 2048 local features per images. NMS radius of Super-
Point and SIFT is 3 and 5, respectively. We split image pairs
of MegaDepth1500 according to scale changes between im-
age pairs. A scale change between an image pairs is defined
as described below. First, we detect keypoints of SuperPoint
for all the images of MegaDepth1500. Then, GT point corre-
spondences for each image pair are obtained by using a GT
essential matrix and intrinsic parameters. We calculate a co-
variance matrix CI ∈ R2×2 of keypoint positions for each
image and the two eigen values (eI1, eI2), where I means an
index of an input image, namely, I ∈ A,B. We denote a
larger eigen value and a smaller eigen value of each image as
eIlarger and eIsmaller, which is defined as

eIlarger = max
{
eI1, e

I
2

}
, eIsmaller = min

{
eI1, e

I
2

}
. (8)

Finally, the scale gap g between the image pair is defined as

g = max

{
max

{√
eAlarger√
eBlarger

,

√
eBlarger√
eAlarger

}

,max

{√
eAsmaller√
eBsmaller

,

√
eBsmaller√
eAsmaller

}}
.

(9)

4. QUALITATIVE VISUALIZATION

4.1. Visualizations for MegaDepth1500 dataset

Fig. 4 and 5 show qualitative visualizations on SIM2E dataset
using SIFT and SuperPoint, respectively.



matcher HPatches (Rotation) HPatches (Scaling)

prec DLT LO-RANSAC prec DLT LO-RANSAC
@3px 1px 3px / 5px 1px 3px / 5px @10px 5px / 10px / 15px 5px / 10px / 15px

SI
FT

NN (ratio test) 84.7 1.1 / 3.8 / 5.4 21.2 / 55.9 / 68.5 86.5 6.2 / 9.8 / 12.7 57.8 / 71.1 / 76.7
SGMNet 78.1 10.2 / 31.2 / 40.8 20.2 / 50.8 / 62.2 95.5 52.0 / 67.9 / 74.9 63.7 / 76.9 / 82.4
LightGlue 85.1 15.4 / 43.3 / 54.4 22.1 / 57.7 / 70.0 95.2 54.4 / 68.6 / 75.0 65.3 / 78.5 / 83.8
Baseline 45.2 8.1 / 19.3 / 23.7 12.8 / 28.2 / 34.1 93.8 51.2 / 66.0 / 72.8 65.0 / 78.1 / 83.3
+SN 89.2 19.5 / 56.5 / 69.3 23.6 / 62.4 / 74.7 95.6 54.5 / 69.5 / 76.3 65.2 / 78.2 / 83.6
+DA 92.1 21.7 / 59.1 / 71.6 23.7 / 62.8 / 75.1 97.1 56.9 / 71.8 / 78.3 65.3 / 78.7 / 84.0
+SN+DA 92.1 21.7 / 59.4 / 71.9 23.6 / 62.9 / 75.1 97.0 57.6 / 72.8 / 79.5 65.3 / 78.7 / 84.0

Su
pe

rP
oi

nt

NN mutual 14.7 0.0 / 0.2 / 0.4 7.3 / 17.9 / 22.4 59.5 4.1 / 6.4 / 8.0 47.8 / 63.3 / 70.4
SuperGlue 35.4 11.3 / 24.0 / 28.5 13.5 / 26.9 / 31.3 96.8 59.8 / 75.5 / 81.7 62.5 / 78.0 / 83.8
SGMNet 33.9 9.3 / 21.9 / 26.6 13.3 / 31.9 / 27.9 95.1 51.3 / 68.4 / 75.8 43.4 / 63.2 / 72.4
LightGlue 33.7 10.8 / 22.9 / 27.1 12.0 / 24.2 / 28.4 97.3 60.1 / 76.1 / 82.3 62.1 / 77.7 / 83.7
Baseline 31.6 8.3 / 19.4 / 23.7 11.1 / 22.7 / 26.9 95.2 56.2 / 72.6 / 79.3 61.3 / 76.8 / 82.7
+SN 32.5 9.0 / 19.0 / 24.0 11.4 / 23.2 / 27.4 95.4 54.7 / 71.7 / 78.8 60.3 / 76.1 / 82.2
+DA 86.9 28.6 / 62.5 / 73.8 32.2 / 66.3 / 77.2 94.4 55.7 / 71.2 / 77.4 60.4 / 75.6 / 81.4
+SN+DA 87.9 30.1 / 64.0 / 75.4 32.6 / 66.8 / 77.8 96.4 57.4 / 73.7 / 80.3 61.4 / 77.2 / 83.3

Table 1: Results on HPtaches and Rotated HPatches. Best and second-best values are in bold and underlined, respectively.

matcher prec AUC DLT AUC RANSAC
3px 1px / 5px 1px / 5px

SI
FT

NN (ratio test) 81.8 1.4 / 4.5 33.2 / 73.0
SGMNet 71.8 13.0 / 38.1 32.2 / 64.6
LightGlue 76.9 16.1 / 43.2 34.8 / 73.8
Baseline 34.6 8.6 / 17.6 17.5 / 29.6
Baseline+SN 86.4 23.9 / 63.2 37.5 / 79.7
Baseline+DA 90.5 28.8 / 69.5 38.1 / 80.4
Baseline+SN+DA 90.9 29.2 / 70.3 38.1 / 80.5

Su
pe

rP
oi

nt

NN mutual 10.8 0.0 / 0.1 8.3 / 18.2
SuperGlue 30.3 10.8 / 23.1 17.5 / 30.5
SGMNet 28.7 8.6 / 20.6 17.3 / 31.2
LightGlue 25.6 10.0 / 20.4 13.6 / 24.1
Baseline 23.9 7.7 / 17.7 12.6 / 22.7
Baseline+SN 23.8 8.5 / 18.5 13.0 / 23.0
Baseline+DA 88.2 34.5 / 73.2 48.4 / 86.3
Baseline+SN+DA 90.0 36.6 / 74.9 49.4 / 87.1

Table 2: Results on SIM2E. Best and second-best values are
in bold and underlined, respectively.
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Fig. 4: Visualizations on SIM2E (SIFT). Green and red lines represent true and false matches, respectively.



Fig. 5: Visualizations on SIM2E (SuperPoint). Green and red lines represent true and false matches, respectively.


